Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909229977> ?p ?o ?g. }
- W2909229977 abstract "Gliomas are the most common primary malignant brain tumors in adults. Accurate grading is crucial as therapeutic strategies are often disparate for different grades and may influence patient prognosis. This study aims to provide an automated glioma grading platform on the basis of machine learning models. In this paper, we investigate contributions of multi-parameters from multimodal data including imaging parameters or features from the Whole Slide images (WSI) and the proliferation marker Ki-67 for automated brain tumor grading. For each WSI, we extract both visual parameters such as morphology parameters and sub-visual parameters including first-order and second-order features. On the basis of machine learning models, our platform classifies gliomas into grades II, III, and IV. Furthermore, we quantitatively interpret and reveal the important parameters contributing to grading with the Local Interpretable Model-Agnostic Explanations (LIME) algorithm. The quantitative analysis and explanation may assist clinicians to better understand the disease and accordingly to choose optimal treatments for improving clinical outcomes. The performance of our grading model was evaluated with cross-validation, which randomly divided the patients into non-overlapping training and testing sets and repeatedly validated the model on the different testing sets. The primary results indicated that this modular platform approach achieved the highest grading accuracy of 0.90 ± 0.04 with support vector machine (SVM) algorithm, with grading accuracies of 0.91 ± 0.08, 0.90 ± 0.08, and 0.90 ± 0.07 for grade II, III, and IV gliomas, respectively." @default.
- W2909229977 created "2019-01-25" @default.
- W2909229977 creator A5000604633 @default.
- W2909229977 creator A5027461099 @default.
- W2909229977 creator A5031981664 @default.
- W2909229977 creator A5046614213 @default.
- W2909229977 creator A5053146492 @default.
- W2909229977 creator A5060200045 @default.
- W2909229977 creator A5079144613 @default.
- W2909229977 creator A5082550056 @default.
- W2909229977 creator A5088624601 @default.
- W2909229977 creator A5089941053 @default.
- W2909229977 date "2019-01-11" @default.
- W2909229977 modified "2023-10-16" @default.
- W2909229977 title "Machine Learning Models for Multiparametric Glioma Grading With Quantitative Result Interpretations" @default.
- W2909229977 cites W133015373 @default.
- W2909229977 cites W1601759476 @default.
- W2909229977 cites W1893588436 @default.
- W2909229977 cites W1982390426 @default.
- W2909229977 cites W2007632290 @default.
- W2909229977 cites W2008721015 @default.
- W2909229977 cites W2008797997 @default.
- W2909229977 cites W2031821806 @default.
- W2909229977 cites W2042571037 @default.
- W2909229977 cites W2056753605 @default.
- W2909229977 cites W2070493638 @default.
- W2909229977 cites W2073943895 @default.
- W2909229977 cites W2080743883 @default.
- W2909229977 cites W2092853008 @default.
- W2909229977 cites W2100303383 @default.
- W2909229977 cites W2105739910 @default.
- W2909229977 cites W2108728387 @default.
- W2909229977 cites W2116531017 @default.
- W2909229977 cites W2119387367 @default.
- W2909229977 cites W2120936657 @default.
- W2909229977 cites W2132430019 @default.
- W2909229977 cites W2142016159 @default.
- W2909229977 cites W2142332605 @default.
- W2909229977 cites W2146655125 @default.
- W2909229977 cites W2160382843 @default.
- W2909229977 cites W2282821441 @default.
- W2909229977 cites W2325769424 @default.
- W2909229977 cites W2366536035 @default.
- W2909229977 cites W2396794347 @default.
- W2909229977 cites W2470130773 @default.
- W2909229977 cites W2470965540 @default.
- W2909229977 cites W2592905743 @default.
- W2909229977 cites W2636200298 @default.
- W2909229977 cites W272571559 @default.
- W2909229977 cites W2761668583 @default.
- W2909229977 cites W2767346095 @default.
- W2909229977 cites W40556125 @default.
- W2909229977 doi "https://doi.org/10.3389/fnins.2018.01046" @default.
- W2909229977 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6337068" @default.
- W2909229977 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30686996" @default.
- W2909229977 hasPublicationYear "2019" @default.
- W2909229977 type Work @default.
- W2909229977 sameAs 2909229977 @default.
- W2909229977 citedByCount "39" @default.
- W2909229977 countsByYear W29092299772019 @default.
- W2909229977 countsByYear W29092299772020 @default.
- W2909229977 countsByYear W29092299772021 @default.
- W2909229977 countsByYear W29092299772022 @default.
- W2909229977 countsByYear W29092299772023 @default.
- W2909229977 crossrefType "journal-article" @default.
- W2909229977 hasAuthorship W2909229977A5000604633 @default.
- W2909229977 hasAuthorship W2909229977A5027461099 @default.
- W2909229977 hasAuthorship W2909229977A5031981664 @default.
- W2909229977 hasAuthorship W2909229977A5046614213 @default.
- W2909229977 hasAuthorship W2909229977A5053146492 @default.
- W2909229977 hasAuthorship W2909229977A5060200045 @default.
- W2909229977 hasAuthorship W2909229977A5079144613 @default.
- W2909229977 hasAuthorship W2909229977A5082550056 @default.
- W2909229977 hasAuthorship W2909229977A5088624601 @default.
- W2909229977 hasAuthorship W2909229977A5089941053 @default.
- W2909229977 hasBestOaLocation W29092299771 @default.
- W2909229977 hasConcept C101468663 @default.
- W2909229977 hasConcept C111919701 @default.
- W2909229977 hasConcept C119857082 @default.
- W2909229977 hasConcept C12267149 @default.
- W2909229977 hasConcept C127413603 @default.
- W2909229977 hasConcept C147176958 @default.
- W2909229977 hasConcept C153180895 @default.
- W2909229977 hasConcept C154945302 @default.
- W2909229977 hasConcept C204321447 @default.
- W2909229977 hasConcept C2777286243 @default.
- W2909229977 hasConcept C2778227246 @default.
- W2909229977 hasConcept C41008148 @default.
- W2909229977 hasConcept C502942594 @default.
- W2909229977 hasConcept C71924100 @default.
- W2909229977 hasConceptScore W2909229977C101468663 @default.
- W2909229977 hasConceptScore W2909229977C111919701 @default.
- W2909229977 hasConceptScore W2909229977C119857082 @default.
- W2909229977 hasConceptScore W2909229977C12267149 @default.
- W2909229977 hasConceptScore W2909229977C127413603 @default.
- W2909229977 hasConceptScore W2909229977C147176958 @default.
- W2909229977 hasConceptScore W2909229977C153180895 @default.
- W2909229977 hasConceptScore W2909229977C154945302 @default.
- W2909229977 hasConceptScore W2909229977C204321447 @default.
- W2909229977 hasConceptScore W2909229977C2777286243 @default.