Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909455890> ?p ?o ?g. }
- W2909455890 endingPage "83" @default.
- W2909455890 startingPage "73" @default.
- W2909455890 abstract "This paper presents a comprehensive procedure to predict geological conditions (i.e., rock mass types) for a tunneling boring machine (TBM) based on big operational data including four channels: cutterhead speed, cutterhead torque, thrust, and advance rate. To handle the big operational data, a Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) algorithm is adopted to effectively compress 12,038,636 TBM operational data to only 5014 leaf node entries. A K-means++ algorithm is used to find potential rock mass types in the TBM operational data. By comparing three kinds of classifiers, a support vector classifier (SVC) with an average precision of 98.6% is selected as the best geological conditions prediction model. Test results on historical TBM operational segments show that most adjacent operational segments have the same rock mass type. The change in rock mass type is a dynamic process, which first fluctuates between two rock mass types and gradually stabilizes at the latter type. In addition, the cutterhead torque and thrust are found to better reflect the change of rock mass types compared with the advance rate and cutterhead speed. Test results on a water conveyance tunnel show that using only 20% of TBM training data the developed prediction model can generate 84.4% precision and 88.8% recall performance for the remaining 80% testing data. Hence, the proposed procedure could be applied to big TBM operational data to accurately detect, characterize, and predict rock mass types, which is of critical importance to safe and efficient tunneling." @default.
- W2909455890 created "2019-01-25" @default.
- W2909455890 creator A5039962474 @default.
- W2909455890 creator A5044333816 @default.
- W2909455890 creator A5054510847 @default.
- W2909455890 date "2019-04-01" @default.
- W2909455890 modified "2023-10-16" @default.
- W2909455890 title "Prediction of geological conditions for a tunnel boring machine using big operational data" @default.
- W2909455890 cites W1968251429 @default.
- W2909455890 cites W2013539279 @default.
- W2909455890 cites W2043672027 @default.
- W2909455890 cites W2045938006 @default.
- W2909455890 cites W2068524367 @default.
- W2909455890 cites W2088340225 @default.
- W2909455890 cites W2115627867 @default.
- W2909455890 cites W2123297508 @default.
- W2909455890 cites W2137901437 @default.
- W2909455890 cites W2142085250 @default.
- W2909455890 cites W2146842127 @default.
- W2909455890 cites W2158001550 @default.
- W2909455890 cites W2326730679 @default.
- W2909455890 cites W2511188031 @default.
- W2909455890 cites W2521901407 @default.
- W2909455890 cites W2570051901 @default.
- W2909455890 cites W2595474610 @default.
- W2909455890 cites W2620253351 @default.
- W2909455890 cites W2743810051 @default.
- W2909455890 cites W2781940057 @default.
- W2909455890 cites W2783295421 @default.
- W2909455890 cites W2786699502 @default.
- W2909455890 cites W2788670787 @default.
- W2909455890 cites W2791732466 @default.
- W2909455890 cites W2792190068 @default.
- W2909455890 cites W2793779484 @default.
- W2909455890 cites W2794556472 @default.
- W2909455890 cites W2809020232 @default.
- W2909455890 cites W2809270307 @default.
- W2909455890 cites W2911964244 @default.
- W2909455890 cites W4239510810 @default.
- W2909455890 cites W774335288 @default.
- W2909455890 doi "https://doi.org/10.1016/j.autcon.2018.12.022" @default.
- W2909455890 hasPublicationYear "2019" @default.
- W2909455890 type Work @default.
- W2909455890 sameAs 2909455890 @default.
- W2909455890 citedByCount "126" @default.
- W2909455890 countsByYear W29094558902019 @default.
- W2909455890 countsByYear W29094558902020 @default.
- W2909455890 countsByYear W29094558902021 @default.
- W2909455890 countsByYear W29094558902022 @default.
- W2909455890 countsByYear W29094558902023 @default.
- W2909455890 crossrefType "journal-article" @default.
- W2909455890 hasAuthorship W2909455890A5039962474 @default.
- W2909455890 hasAuthorship W2909455890A5044333816 @default.
- W2909455890 hasAuthorship W2909455890A5054510847 @default.
- W2909455890 hasConcept C121332964 @default.
- W2909455890 hasConcept C12267149 @default.
- W2909455890 hasConcept C124101348 @default.
- W2909455890 hasConcept C127413603 @default.
- W2909455890 hasConcept C144171764 @default.
- W2909455890 hasConcept C154945302 @default.
- W2909455890 hasConcept C16910744 @default.
- W2909455890 hasConcept C187320778 @default.
- W2909455890 hasConcept C199360897 @default.
- W2909455890 hasConcept C41008148 @default.
- W2909455890 hasConcept C41242791 @default.
- W2909455890 hasConcept C75684735 @default.
- W2909455890 hasConcept C78519656 @default.
- W2909455890 hasConcept C79420006 @default.
- W2909455890 hasConcept C97355855 @default.
- W2909455890 hasConceptScore W2909455890C121332964 @default.
- W2909455890 hasConceptScore W2909455890C12267149 @default.
- W2909455890 hasConceptScore W2909455890C124101348 @default.
- W2909455890 hasConceptScore W2909455890C127413603 @default.
- W2909455890 hasConceptScore W2909455890C144171764 @default.
- W2909455890 hasConceptScore W2909455890C154945302 @default.
- W2909455890 hasConceptScore W2909455890C16910744 @default.
- W2909455890 hasConceptScore W2909455890C187320778 @default.
- W2909455890 hasConceptScore W2909455890C199360897 @default.
- W2909455890 hasConceptScore W2909455890C41008148 @default.
- W2909455890 hasConceptScore W2909455890C41242791 @default.
- W2909455890 hasConceptScore W2909455890C75684735 @default.
- W2909455890 hasConceptScore W2909455890C78519656 @default.
- W2909455890 hasConceptScore W2909455890C79420006 @default.
- W2909455890 hasConceptScore W2909455890C97355855 @default.
- W2909455890 hasFunder F4320321001 @default.
- W2909455890 hasFunder F4320335777 @default.
- W2909455890 hasLocation W29094558901 @default.
- W2909455890 hasOpenAccess W2909455890 @default.
- W2909455890 hasPrimaryLocation W29094558901 @default.
- W2909455890 hasRelatedWork W1510405023 @default.
- W2909455890 hasRelatedWork W169774068 @default.
- W2909455890 hasRelatedWork W1855281999 @default.
- W2909455890 hasRelatedWork W2045316377 @default.
- W2909455890 hasRelatedWork W2347404407 @default.
- W2909455890 hasRelatedWork W2355927362 @default.
- W2909455890 hasRelatedWork W2899084033 @default.
- W2909455890 hasRelatedWork W2982485485 @default.
- W2909455890 hasRelatedWork W36512856 @default.