Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909472882> ?p ?o ?g. }
- W2909472882 endingPage "181" @default.
- W2909472882 startingPage "181" @default.
- W2909472882 abstract "Rice is the staple food for more than half of humanity. Accurate prediction of rice harvests is therefore of considerable global importance for food security and economic stability, especially in the developing world. Landsat sensors have collected coincident thermal and optical images for the past 35+ years, and so can provide both retrospective and near-realtime constraints on the spatial extent of rice planting and the timing of rice phenology. Thermal and optical imaging capture different physical processes, and so provide different types of information for phenologic mapping. Most analyses use only one or the other data source, omitting potentially useful information. We present a novel approach to the mapping and monitoring of rice agriculture which leverages both optical and thermal measurements. The approach relies on Temporal Mixture Models (TMMs) derived from parallel Empirical Orthogonal Function (EOF) analyses of Landsat image time series. Analysis of each image time series is performed in two stages: (1) spatiotemporal characterization, and (2) temporal mixture modeling. Characterization evaluates the covariance structure of the data, culminating in the selection of temporal endmembers (EMs) representing the most distinct phenological cycles of either vegetation abundance or surface temperature. Modeling uses these EMs as the basis for linear TMMs which map the spatial distribution of each EM phenological pattern across study area. The two metrics we analyze in parallel are (1) fractional vegetation abundance (Fv) derived from spectral mixture analysis (SMA) of optical reflectance, and (2) land surface temperature (LST) derived from brightness temperature (Tb). These metrics are chosen on the basis of being straightforward to compute for any (cloud-free) Landsat 4-8 image in the global archive. We demonstrate the method using a 90 × 120 km area in the Sacramento Valley of California. Satellite Tb retrievals are corrected to LST using a standardized atmospheric correction approach and pixelwise fractional emissivity estimates derived from SMA. LST and Tb time series are compared to field station data in 2016 and 2017. Uncorrected Tb is observed to agree with the upper bound of the envelope of air temperature observations to within 3 °C on average. As expected, LST estimates are 3 to 5 °C higher. Soil T, air T, Tb and LST estimates can all be represented as linear transformations of the same seasonal cycle. The 3D temporal feature spaces of Fv and LST clearly resolve 5 and 7 temporal EM phenologies, respectively, with strong clustering distinguishing rice from other vegetation. Results from parallel EOF analyses of coincident Fv and LST image time series over the 2016 and 2017 growing seasons suggest that TMMs based on single year Fv datasets can provide accurate maps of crop timing, while TMMs based on dual year LST datasets can provide comparable maps of year-to-year crop conversion. We also test a partial-year model midway through the 2018 growing season to illustrate a potential real-time monitoring application. Field validation confirms the monitoring model provides an upper bound estimate of spatial extent and relative timing of the rice crop accurate to 89%, even with an unusually sparse set of usable Landsat images." @default.
- W2909472882 created "2019-01-25" @default.
- W2909472882 creator A5025352897 @default.
- W2909472882 creator A5066696545 @default.
- W2909472882 date "2019-01-18" @default.
- W2909472882 modified "2023-09-25" @default.
- W2909472882 title "Mapping and Monitoring Rice Agriculture with Multisensor Temporal Mixture Models" @default.
- W2909472882 cites W1144073223 @default.
- W2909472882 cites W1154758367 @default.
- W2909472882 cites W1537844550 @default.
- W2909472882 cites W1553898020 @default.
- W2909472882 cites W1892481930 @default.
- W2909472882 cites W1964668008 @default.
- W2909472882 cites W1966798775 @default.
- W2909472882 cites W1967722715 @default.
- W2909472882 cites W1970361125 @default.
- W2909472882 cites W1978835122 @default.
- W2909472882 cites W1981561767 @default.
- W2909472882 cites W1985382089 @default.
- W2909472882 cites W1986072339 @default.
- W2909472882 cites W1988573917 @default.
- W2909472882 cites W1997727596 @default.
- W2909472882 cites W2007502829 @default.
- W2909472882 cites W2007582395 @default.
- W2909472882 cites W2014446298 @default.
- W2909472882 cites W2025161571 @default.
- W2909472882 cites W2025761833 @default.
- W2909472882 cites W2029759810 @default.
- W2909472882 cites W2038353908 @default.
- W2909472882 cites W2039217928 @default.
- W2909472882 cites W2041570083 @default.
- W2909472882 cites W2046292468 @default.
- W2909472882 cites W2048889118 @default.
- W2909472882 cites W2056435747 @default.
- W2909472882 cites W2060953582 @default.
- W2909472882 cites W2074093876 @default.
- W2909472882 cites W2075001972 @default.
- W2909472882 cites W2087683803 @default.
- W2909472882 cites W2108493207 @default.
- W2909472882 cites W2108525570 @default.
- W2909472882 cites W2110504380 @default.
- W2909472882 cites W2110614570 @default.
- W2909472882 cites W2117668596 @default.
- W2909472882 cites W2132399151 @default.
- W2909472882 cites W2157675604 @default.
- W2909472882 cites W2161425513 @default.
- W2909472882 cites W2266309631 @default.
- W2909472882 cites W2294798173 @default.
- W2909472882 cites W2322799392 @default.
- W2909472882 cites W2509286643 @default.
- W2909472882 cites W2520905560 @default.
- W2909472882 cites W2592541999 @default.
- W2909472882 cites W2790246883 @default.
- W2909472882 cites W2902773885 @default.
- W2909472882 cites W2963081958 @default.
- W2909472882 cites W2964204883 @default.
- W2909472882 doi "https://doi.org/10.3390/rs11020181" @default.
- W2909472882 hasPublicationYear "2019" @default.
- W2909472882 type Work @default.
- W2909472882 sameAs 2909472882 @default.
- W2909472882 citedByCount "13" @default.
- W2909472882 countsByYear W29094728822019 @default.
- W2909472882 countsByYear W29094728822020 @default.
- W2909472882 countsByYear W29094728822021 @default.
- W2909472882 countsByYear W29094728822022 @default.
- W2909472882 crossrefType "journal-article" @default.
- W2909472882 hasAuthorship W2909472882A5025352897 @default.
- W2909472882 hasAuthorship W2909472882A5066696545 @default.
- W2909472882 hasBestOaLocation W29094728821 @default.
- W2909472882 hasConcept C105795698 @default.
- W2909472882 hasConcept C13724139 @default.
- W2909472882 hasConcept C142724271 @default.
- W2909472882 hasConcept C151406439 @default.
- W2909472882 hasConcept C18903297 @default.
- W2909472882 hasConcept C205649164 @default.
- W2909472882 hasConcept C2776133958 @default.
- W2909472882 hasConcept C33923547 @default.
- W2909472882 hasConcept C39432304 @default.
- W2909472882 hasConcept C51417038 @default.
- W2909472882 hasConcept C62649853 @default.
- W2909472882 hasConcept C71924100 @default.
- W2909472882 hasConcept C77077793 @default.
- W2909472882 hasConcept C86803240 @default.
- W2909472882 hasConceptScore W2909472882C105795698 @default.
- W2909472882 hasConceptScore W2909472882C13724139 @default.
- W2909472882 hasConceptScore W2909472882C142724271 @default.
- W2909472882 hasConceptScore W2909472882C151406439 @default.
- W2909472882 hasConceptScore W2909472882C18903297 @default.
- W2909472882 hasConceptScore W2909472882C205649164 @default.
- W2909472882 hasConceptScore W2909472882C2776133958 @default.
- W2909472882 hasConceptScore W2909472882C33923547 @default.
- W2909472882 hasConceptScore W2909472882C39432304 @default.
- W2909472882 hasConceptScore W2909472882C51417038 @default.
- W2909472882 hasConceptScore W2909472882C62649853 @default.
- W2909472882 hasConceptScore W2909472882C71924100 @default.
- W2909472882 hasConceptScore W2909472882C77077793 @default.
- W2909472882 hasConceptScore W2909472882C86803240 @default.
- W2909472882 hasIssue "2" @default.