Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909474014> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2909474014 endingPage "81" @default.
- W2909474014 startingPage "81" @default.
- W2909474014 abstract "Tuberculosis (TB) is among top ten causes of deaths worldwide. It is the single most cause of deaths by an infectious disease and is ranked 2nd only after the HIV/AIDS. In third world countries, the diagnosis of TB is done through conventional methods. To diagnostic results are obtain from conventional methods such as blood, culture, sputum and biopsies. They are tedious as well as take long time like 1-2 weeks or maybe evenmore. Therefore, to lower the detection time and raise the accuracy of diagnosis several researches have been carried out. In the past fifty years, due to the advanced and sophisticated technologies, in medical as well as computer science fields, have paved a way to utilize the essence of both the areas. In Artificial Intelligence (AI) various Machine Learning (ML) algorithms have furthered the interests in Computer-aided Detection (CADe) and Diagnosis (CADx) methods. These methodologies assist in medical field for diagnosing the diseases through clinical signs and symptoms as well as radiological images of the patient. They have been implemented for the diagnosis of TB. Advances in AI algorithms, has unveiled great promises in identifying the presence and absence of TB. As of late, many attempts have been made to formulate the strategies to increase the classification accuracy of TB diagnosis using the AI and machine learning approach. This review paper, aims to describes the diverse AI approaches employed in the diagnosis of TB." @default.
- W2909474014 created "2019-01-25" @default.
- W2909474014 creator A5030359539 @default.
- W2909474014 creator A5042542172 @default.
- W2909474014 creator A5051612091 @default.
- W2909474014 creator A5078904539 @default.
- W2909474014 creator A5086723698 @default.
- W2909474014 date "2019-01-17" @default.
- W2909474014 modified "2023-10-18" @default.
- W2909474014 title "Artificial Intelligence in Diagnosing Tuberculosis: A Review" @default.
- W2909474014 doi "https://doi.org/10.18517/ijaseit.9.1.7567" @default.
- W2909474014 hasPublicationYear "2019" @default.
- W2909474014 type Work @default.
- W2909474014 sameAs 2909474014 @default.
- W2909474014 citedByCount "21" @default.
- W2909474014 countsByYear W29094740142020 @default.
- W2909474014 countsByYear W29094740142021 @default.
- W2909474014 countsByYear W29094740142022 @default.
- W2909474014 countsByYear W29094740142023 @default.
- W2909474014 crossrefType "journal-article" @default.
- W2909474014 hasAuthorship W2909474014A5030359539 @default.
- W2909474014 hasAuthorship W2909474014A5042542172 @default.
- W2909474014 hasAuthorship W2909474014A5051612091 @default.
- W2909474014 hasAuthorship W2909474014A5078904539 @default.
- W2909474014 hasAuthorship W2909474014A5086723698 @default.
- W2909474014 hasBestOaLocation W29094740141 @default.
- W2909474014 hasConcept C119857082 @default.
- W2909474014 hasConcept C142724271 @default.
- W2909474014 hasConcept C154945302 @default.
- W2909474014 hasConcept C177713679 @default.
- W2909474014 hasConcept C203014093 @default.
- W2909474014 hasConcept C2777975735 @default.
- W2909474014 hasConcept C2779134260 @default.
- W2909474014 hasConcept C2780639635 @default.
- W2909474014 hasConcept C2781069245 @default.
- W2909474014 hasConcept C3013748606 @default.
- W2909474014 hasConcept C41008148 @default.
- W2909474014 hasConcept C524204448 @default.
- W2909474014 hasConcept C71924100 @default.
- W2909474014 hasConceptScore W2909474014C119857082 @default.
- W2909474014 hasConceptScore W2909474014C142724271 @default.
- W2909474014 hasConceptScore W2909474014C154945302 @default.
- W2909474014 hasConceptScore W2909474014C177713679 @default.
- W2909474014 hasConceptScore W2909474014C203014093 @default.
- W2909474014 hasConceptScore W2909474014C2777975735 @default.
- W2909474014 hasConceptScore W2909474014C2779134260 @default.
- W2909474014 hasConceptScore W2909474014C2780639635 @default.
- W2909474014 hasConceptScore W2909474014C2781069245 @default.
- W2909474014 hasConceptScore W2909474014C3013748606 @default.
- W2909474014 hasConceptScore W2909474014C41008148 @default.
- W2909474014 hasConceptScore W2909474014C524204448 @default.
- W2909474014 hasConceptScore W2909474014C71924100 @default.
- W2909474014 hasIssue "1" @default.
- W2909474014 hasLocation W29094740141 @default.
- W2909474014 hasLocation W29094740142 @default.
- W2909474014 hasOpenAccess W2909474014 @default.
- W2909474014 hasPrimaryLocation W29094740141 @default.
- W2909474014 hasRelatedWork W2157451182 @default.
- W2909474014 hasRelatedWork W2288874902 @default.
- W2909474014 hasRelatedWork W2361615820 @default.
- W2909474014 hasRelatedWork W2514999355 @default.
- W2909474014 hasRelatedWork W3162661346 @default.
- W2909474014 hasRelatedWork W4200422889 @default.
- W2909474014 hasRelatedWork W4206672602 @default.
- W2909474014 hasRelatedWork W4220666904 @default.
- W2909474014 hasRelatedWork W4311510812 @default.
- W2909474014 hasRelatedWork W4313048606 @default.
- W2909474014 hasVolume "9" @default.
- W2909474014 isParatext "false" @default.
- W2909474014 isRetracted "false" @default.
- W2909474014 magId "2909474014" @default.
- W2909474014 workType "article" @default.