Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909489003> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2909489003 abstract "The measurement of particle matter (PM) of mass concentration by low-cost PM sensor is strongly influenced by environmental factors such as humidity, temperature, wind speed, wind direction. In this study, we developed a machine learning-based calibration method for low-cost light-scattering PM sensor. A Feedforward Neural Network (FNN) was used to compensate for the effect of environmental factors on the PM measurements. Experimental data were collected from 20 March - 6 May 2018 in central Taiwan, and used to train and evaluate the calibration model. Before calibrating PM sensor, the PM2.5 mass concentration of low-cost PM sensors have the lowest values of R-squared (R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>)</sub> , with 0.618±0.033 as compared to the Environmental Protection Agency (EPA) approved federal equivalent method (FEM) instrument (BAM-1020, Met One Instruments). After calibrating PM sensor by using the FNN calibration model, the PM2.5 mass concentration of low-cost PM sensors show the highest linearity with an R <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sup> value of 0.905±0.013 for BAM-1020. It demonstrated that the machine-learning method could be used to calibrate a low-cost PM sensor and improve its accuracy." @default.
- W2909489003 created "2019-01-25" @default.
- W2909489003 creator A5001821290 @default.
- W2909489003 creator A5006633881 @default.
- W2909489003 creator A5027920739 @default.
- W2909489003 creator A5041921173 @default.
- W2909489003 creator A5045471989 @default.
- W2909489003 creator A5046941567 @default.
- W2909489003 creator A5056280557 @default.
- W2909489003 creator A5061683345 @default.
- W2909489003 creator A5073513184 @default.
- W2909489003 date "2018-10-01" @default.
- W2909489003 modified "2023-10-18" @default.
- W2909489003 title "Calibration of Low-Cost Particle Sensors by Using Machine-Learning Method" @default.
- W2909489003 cites W2106839690 @default.
- W2909489003 cites W2177101396 @default.
- W2909489003 cites W2765891303 @default.
- W2909489003 cites W2768159489 @default.
- W2909489003 cites W2793148246 @default.
- W2909489003 doi "https://doi.org/10.1109/apccas.2018.8605619" @default.
- W2909489003 hasPublicationYear "2018" @default.
- W2909489003 type Work @default.
- W2909489003 sameAs 2909489003 @default.
- W2909489003 citedByCount "12" @default.
- W2909489003 countsByYear W29094890032020 @default.
- W2909489003 countsByYear W29094890032021 @default.
- W2909489003 countsByYear W29094890032022 @default.
- W2909489003 countsByYear W29094890032023 @default.
- W2909489003 crossrefType "proceedings-article" @default.
- W2909489003 hasAuthorship W2909489003A5001821290 @default.
- W2909489003 hasAuthorship W2909489003A5006633881 @default.
- W2909489003 hasAuthorship W2909489003A5027920739 @default.
- W2909489003 hasAuthorship W2909489003A5041921173 @default.
- W2909489003 hasAuthorship W2909489003A5045471989 @default.
- W2909489003 hasAuthorship W2909489003A5046941567 @default.
- W2909489003 hasAuthorship W2909489003A5056280557 @default.
- W2909489003 hasAuthorship W2909489003A5061683345 @default.
- W2909489003 hasAuthorship W2909489003A5073513184 @default.
- W2909489003 hasConcept C105795698 @default.
- W2909489003 hasConcept C113196181 @default.
- W2909489003 hasConcept C119857082 @default.
- W2909489003 hasConcept C121332964 @default.
- W2909489003 hasConcept C154945302 @default.
- W2909489003 hasConcept C165838908 @default.
- W2909489003 hasConcept C185592680 @default.
- W2909489003 hasConcept C33923547 @default.
- W2909489003 hasConcept C41008148 @default.
- W2909489003 hasConcept C43617362 @default.
- W2909489003 hasConcept C50644808 @default.
- W2909489003 hasConceptScore W2909489003C105795698 @default.
- W2909489003 hasConceptScore W2909489003C113196181 @default.
- W2909489003 hasConceptScore W2909489003C119857082 @default.
- W2909489003 hasConceptScore W2909489003C121332964 @default.
- W2909489003 hasConceptScore W2909489003C154945302 @default.
- W2909489003 hasConceptScore W2909489003C165838908 @default.
- W2909489003 hasConceptScore W2909489003C185592680 @default.
- W2909489003 hasConceptScore W2909489003C33923547 @default.
- W2909489003 hasConceptScore W2909489003C41008148 @default.
- W2909489003 hasConceptScore W2909489003C43617362 @default.
- W2909489003 hasConceptScore W2909489003C50644808 @default.
- W2909489003 hasLocation W29094890031 @default.
- W2909489003 hasOpenAccess W2909489003 @default.
- W2909489003 hasPrimaryLocation W29094890031 @default.
- W2909489003 hasRelatedWork W2386387936 @default.
- W2909489003 hasRelatedWork W2961085424 @default.
- W2909489003 hasRelatedWork W3046775127 @default.
- W2909489003 hasRelatedWork W3170094116 @default.
- W2909489003 hasRelatedWork W4205958290 @default.
- W2909489003 hasRelatedWork W4285260836 @default.
- W2909489003 hasRelatedWork W4286629047 @default.
- W2909489003 hasRelatedWork W4306321456 @default.
- W2909489003 hasRelatedWork W4306674287 @default.
- W2909489003 hasRelatedWork W4224009465 @default.
- W2909489003 isParatext "false" @default.
- W2909489003 isRetracted "false" @default.
- W2909489003 magId "2909489003" @default.
- W2909489003 workType "article" @default.