Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909616168> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2909616168 abstract "We propose a new deep learning algorithm for multiple microtubule (MT) segmentation in time-lapse images using the recurrent attention. Segmentation results from each pair of succeeding frames are being fed into a Hungarian algorithm to assign correspondences among MTs to generate a distinct path through the frames. Based on the obtained trajectories, we calculate MT velocities. Results of this work is expected to help biologists to characterize MT behaviors as well as their potential interactions. To validate our technique, we first use the statistics derived from the real time-lapse series of MT gliding assays to produce a large set of simulated data. We employ this dataset to train our network and optimize its hyperparameters. Then, we utilize the trained model to initialize the network while learning about the real data. Our experimental results show that the proposed algorithm improves the precision for MT instance velocity estimation to 71.3% from the baseline result (29.3%). We also demonstrate how the injection of temporal information into our network can reduce the false negative rates from 67.8% (baseline) down to 28.7% (proposed)." @default.
- W2909616168 created "2019-01-25" @default.
- W2909616168 creator A5003241293 @default.
- W2909616168 creator A5012528455 @default.
- W2909616168 creator A5030188696 @default.
- W2909616168 creator A5040820784 @default.
- W2909616168 creator A5080687975 @default.
- W2909616168 date "2019-01-17" @default.
- W2909616168 modified "2023-09-27" @default.
- W2909616168 title "Instance-Level Microtubule Segmentation Using Recurrent Attention." @default.
- W2909616168 hasPublicationYear "2019" @default.
- W2909616168 type Work @default.
- W2909616168 sameAs 2909616168 @default.
- W2909616168 citedByCount "0" @default.
- W2909616168 crossrefType "posted-content" @default.
- W2909616168 hasAuthorship W2909616168A5003241293 @default.
- W2909616168 hasAuthorship W2909616168A5012528455 @default.
- W2909616168 hasAuthorship W2909616168A5030188696 @default.
- W2909616168 hasAuthorship W2909616168A5040820784 @default.
- W2909616168 hasAuthorship W2909616168A5080687975 @default.
- W2909616168 hasConcept C108583219 @default.
- W2909616168 hasConcept C111368507 @default.
- W2909616168 hasConcept C11413529 @default.
- W2909616168 hasConcept C119857082 @default.
- W2909616168 hasConcept C12725497 @default.
- W2909616168 hasConcept C127313418 @default.
- W2909616168 hasConcept C153180895 @default.
- W2909616168 hasConcept C154945302 @default.
- W2909616168 hasConcept C177264268 @default.
- W2909616168 hasConcept C199360897 @default.
- W2909616168 hasConcept C2777735758 @default.
- W2909616168 hasConcept C41008148 @default.
- W2909616168 hasConcept C58489278 @default.
- W2909616168 hasConcept C8642999 @default.
- W2909616168 hasConcept C89600930 @default.
- W2909616168 hasConceptScore W2909616168C108583219 @default.
- W2909616168 hasConceptScore W2909616168C111368507 @default.
- W2909616168 hasConceptScore W2909616168C11413529 @default.
- W2909616168 hasConceptScore W2909616168C119857082 @default.
- W2909616168 hasConceptScore W2909616168C12725497 @default.
- W2909616168 hasConceptScore W2909616168C127313418 @default.
- W2909616168 hasConceptScore W2909616168C153180895 @default.
- W2909616168 hasConceptScore W2909616168C154945302 @default.
- W2909616168 hasConceptScore W2909616168C177264268 @default.
- W2909616168 hasConceptScore W2909616168C199360897 @default.
- W2909616168 hasConceptScore W2909616168C2777735758 @default.
- W2909616168 hasConceptScore W2909616168C41008148 @default.
- W2909616168 hasConceptScore W2909616168C58489278 @default.
- W2909616168 hasConceptScore W2909616168C8642999 @default.
- W2909616168 hasConceptScore W2909616168C89600930 @default.
- W2909616168 hasLocation W29096161681 @default.
- W2909616168 hasOpenAccess W2909616168 @default.
- W2909616168 hasPrimaryLocation W29096161681 @default.
- W2909616168 hasRelatedWork W2045105883 @default.
- W2909616168 hasRelatedWork W2136482849 @default.
- W2909616168 hasRelatedWork W2142532592 @default.
- W2909616168 hasRelatedWork W2318414460 @default.
- W2909616168 hasRelatedWork W2751713519 @default.
- W2909616168 hasRelatedWork W2769460278 @default.
- W2909616168 hasRelatedWork W2929491888 @default.
- W2909616168 hasRelatedWork W2950008225 @default.
- W2909616168 hasRelatedWork W2952437267 @default.
- W2909616168 hasRelatedWork W2968603329 @default.
- W2909616168 hasRelatedWork W2977426482 @default.
- W2909616168 hasRelatedWork W2982834730 @default.
- W2909616168 hasRelatedWork W2994635712 @default.
- W2909616168 hasRelatedWork W3013892423 @default.
- W2909616168 hasRelatedWork W3100692372 @default.
- W2909616168 hasRelatedWork W3105862761 @default.
- W2909616168 hasRelatedWork W3159257425 @default.
- W2909616168 hasRelatedWork W3205336782 @default.
- W2909616168 hasRelatedWork W3211891673 @default.
- W2909616168 hasRelatedWork W53832915 @default.
- W2909616168 isParatext "false" @default.
- W2909616168 isRetracted "false" @default.
- W2909616168 magId "2909616168" @default.
- W2909616168 workType "article" @default.