Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909670596> ?p ?o ?g. }
- W2909670596 endingPage "116" @default.
- W2909670596 startingPage "103" @default.
- W2909670596 abstract "Short-term load forecasting plays an essential role in the safe and stable operation of power systems and has always been a vital research issue of energy management. In this research, a hybrid short-load forecasting method with Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM) networks considering relevant factors which optimized by the Bayesian Optimization Algorithm (BOA) is studied. This method firstly decomposition with VMD which is a non-recursive signal processing technology that can decompose a signal into a discrete number of modes, then, consider the relevant factors and extend to the sequence according to the coefficient of association. Specifically, for the day type and higher or lower temperature, the nonlinear mapping is used and optimized by the BOA. Finally, the subsequences are predicted by LSTM which is a special Recurrent Neural Network with memory cells and reconstructed. To validate the performance of the proposed method, two categories of contrast methods including individual methods and decomposition-based methods are demonstrated in this study. The individual methods which without decomposition processes including LSTM, Support Vector Regression, Multi-Layered Perceptron Regressor, Linear Regression, and Random Forest Regressor, and the decomposition based methods including Empirical Mode Decomposition-Long Short-Term Memory, and Ensemble Empirical Mode Decomposition-Long Short-Term Memory. The simulation results, which developed in four periods of Hubei Province, China, show that the prediction accuracy of the proposed model is significantly improved compared with the contrast methods." @default.
- W2909670596 created "2019-01-25" @default.
- W2909670596 creator A5003862827 @default.
- W2909670596 creator A5009958254 @default.
- W2909670596 creator A5012489823 @default.
- W2909670596 creator A5053818554 @default.
- W2909670596 creator A5079367813 @default.
- W2909670596 date "2019-03-01" @default.
- W2909670596 modified "2023-10-16" @default.
- W2909670596 title "A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm" @default.
- W2909670596 cites W1185746543 @default.
- W2909670596 cites W1979373126 @default.
- W2909670596 cites W1980477020 @default.
- W2909670596 cites W2000982976 @default.
- W2909670596 cites W2007221293 @default.
- W2909670596 cites W2008406084 @default.
- W2909670596 cites W2012302230 @default.
- W2909670596 cites W2016589492 @default.
- W2909670596 cites W2019624538 @default.
- W2909670596 cites W2027092573 @default.
- W2909670596 cites W2042792535 @default.
- W2909670596 cites W2044607048 @default.
- W2909670596 cites W2051630583 @default.
- W2909670596 cites W2062901109 @default.
- W2909670596 cites W2064675550 @default.
- W2909670596 cites W2067847508 @default.
- W2909670596 cites W2076163358 @default.
- W2909670596 cites W2106742347 @default.
- W2909670596 cites W2107878631 @default.
- W2909670596 cites W2111072639 @default.
- W2909670596 cites W2135651192 @default.
- W2909670596 cites W2192203593 @default.
- W2909670596 cites W2292129691 @default.
- W2909670596 cites W2606283685 @default.
- W2909670596 cites W2749915133 @default.
- W2909670596 cites W2767124238 @default.
- W2909670596 cites W2792616493 @default.
- W2909670596 cites W2792961021 @default.
- W2909670596 cites W2800571504 @default.
- W2909670596 cites W2808383779 @default.
- W2909670596 cites W2891967931 @default.
- W2909670596 cites W2894229023 @default.
- W2909670596 cites W341735883 @default.
- W2909670596 cites W4246587917 @default.
- W2909670596 doi "https://doi.org/10.1016/j.apenergy.2019.01.055" @default.
- W2909670596 hasPublicationYear "2019" @default.
- W2909670596 type Work @default.
- W2909670596 sameAs 2909670596 @default.
- W2909670596 citedByCount "178" @default.
- W2909670596 countsByYear W29096705962019 @default.
- W2909670596 countsByYear W29096705962020 @default.
- W2909670596 countsByYear W29096705962021 @default.
- W2909670596 countsByYear W29096705962022 @default.
- W2909670596 countsByYear W29096705962023 @default.
- W2909670596 crossrefType "journal-article" @default.
- W2909670596 hasAuthorship W2909670596A5003862827 @default.
- W2909670596 hasAuthorship W2909670596A5009958254 @default.
- W2909670596 hasAuthorship W2909670596A5012489823 @default.
- W2909670596 hasAuthorship W2909670596A5053818554 @default.
- W2909670596 hasAuthorship W2909670596A5079367813 @default.
- W2909670596 hasConcept C105795698 @default.
- W2909670596 hasConcept C107673813 @default.
- W2909670596 hasConcept C111919701 @default.
- W2909670596 hasConcept C11413529 @default.
- W2909670596 hasConcept C121332964 @default.
- W2909670596 hasConcept C12267149 @default.
- W2909670596 hasConcept C124681953 @default.
- W2909670596 hasConcept C154945302 @default.
- W2909670596 hasConcept C158622935 @default.
- W2909670596 hasConcept C186370098 @default.
- W2909670596 hasConcept C18903297 @default.
- W2909670596 hasConcept C25570617 @default.
- W2909670596 hasConcept C2776502983 @default.
- W2909670596 hasConcept C2778258933 @default.
- W2909670596 hasConcept C33923547 @default.
- W2909670596 hasConcept C41008148 @default.
- W2909670596 hasConcept C48677424 @default.
- W2909670596 hasConcept C50644808 @default.
- W2909670596 hasConcept C60908668 @default.
- W2909670596 hasConcept C61797465 @default.
- W2909670596 hasConcept C62520636 @default.
- W2909670596 hasConcept C86803240 @default.
- W2909670596 hasConceptScore W2909670596C105795698 @default.
- W2909670596 hasConceptScore W2909670596C107673813 @default.
- W2909670596 hasConceptScore W2909670596C111919701 @default.
- W2909670596 hasConceptScore W2909670596C11413529 @default.
- W2909670596 hasConceptScore W2909670596C121332964 @default.
- W2909670596 hasConceptScore W2909670596C12267149 @default.
- W2909670596 hasConceptScore W2909670596C124681953 @default.
- W2909670596 hasConceptScore W2909670596C154945302 @default.
- W2909670596 hasConceptScore W2909670596C158622935 @default.
- W2909670596 hasConceptScore W2909670596C186370098 @default.
- W2909670596 hasConceptScore W2909670596C18903297 @default.
- W2909670596 hasConceptScore W2909670596C25570617 @default.
- W2909670596 hasConceptScore W2909670596C2776502983 @default.
- W2909670596 hasConceptScore W2909670596C2778258933 @default.
- W2909670596 hasConceptScore W2909670596C33923547 @default.
- W2909670596 hasConceptScore W2909670596C41008148 @default.