Matches in SemOpenAlex for { <https://semopenalex.org/work/W2909918885> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2909918885 endingPage "100196" @default.
- W2909918885 startingPage "100196" @default.
- W2909918885 abstract "Abstract Tropical cyclone induced storm surge and associated onshore flooding poses significant danger and havoc to life, property and infrastructure during the time of landfall. Coastal belt along the East coast of India is thickly populated and also highly vulnerable to impact of tropical cyclones. Real-time forecasting system that provides reliable estimates on possible storm surge height, envelope and extent of onshore flooding has potential socio-economic benefits. Conventional methods use state-of-art numerical models or ensemble of models that are computationally expensive and highly time consuming during real-time operations. This study proposes an alternate approach using soft computing techniques such as Artificial Neural Network (ANN) for the prediction of storm surge and onshore flooding. The proposed network architecture is proven to be viable and highly cost-effective consistently maintaining high level of computational accuracy (>92%) thereby finding potential real-time application. As a case study, the efficacy of ANN model in simulating storm-tide and extent of onshore flooding associated with the 1999 Odisha Super cyclone have been examined. Pre-computed scenarios of storm-tide and inundation data were used to train ANN model for the entire Odisha coast with a success rate of 99%. After the training phase, computational time in prediction of storm surge and inundation is quite rapid (in order of seconds) as compared to any conventional model. Validation exercise performed to skill assess the robustness of ANN model using archived records of storm-tide and inundation obtained an accuracy of 92% and 94% respectively. Results obtained are quite encouraging demonstrating the efficacy of ANN model for real-time application and effectiveness for disaster risk reduction during tropical cyclone activity." @default.
- W2909918885 created "2019-01-25" @default.
- W2909918885 creator A5009231812 @default.
- W2909918885 creator A5059290135 @default.
- W2909918885 date "2019-03-01" @default.
- W2909918885 modified "2023-10-06" @default.
- W2909918885 title "Prediction of storm surge and coastal inundation using Artificial Neural Network – A case study for 1999 Odisha Super Cyclone" @default.
- W2909918885 cites W1969861235 @default.
- W2909918885 cites W1969927657 @default.
- W2909918885 cites W1978708563 @default.
- W2909918885 cites W1985019196 @default.
- W2909918885 cites W1994444873 @default.
- W2909918885 cites W2037371126 @default.
- W2909918885 cites W2043550022 @default.
- W2909918885 cites W2045886268 @default.
- W2909918885 cites W2054332642 @default.
- W2909918885 cites W2056539248 @default.
- W2909918885 cites W2058674828 @default.
- W2909918885 cites W2077738827 @default.
- W2909918885 cites W2083671433 @default.
- W2909918885 cites W2085079287 @default.
- W2909918885 cites W2131098601 @default.
- W2909918885 cites W2146235859 @default.
- W2909918885 cites W2155482699 @default.
- W2909918885 cites W2166323236 @default.
- W2909918885 cites W2200707935 @default.
- W2909918885 cites W2259719819 @default.
- W2909918885 cites W2538384144 @default.
- W2909918885 cites W2767229091 @default.
- W2909918885 cites W4247800108 @default.
- W2909918885 doi "https://doi.org/10.1016/j.wace.2019.100196" @default.
- W2909918885 hasPublicationYear "2019" @default.
- W2909918885 type Work @default.
- W2909918885 sameAs 2909918885 @default.
- W2909918885 citedByCount "37" @default.
- W2909918885 countsByYear W29099188852020 @default.
- W2909918885 countsByYear W29099188852021 @default.
- W2909918885 countsByYear W29099188852022 @default.
- W2909918885 countsByYear W29099188852023 @default.
- W2909918885 crossrefType "journal-article" @default.
- W2909918885 hasAuthorship W2909918885A5009231812 @default.
- W2909918885 hasAuthorship W2909918885A5059290135 @default.
- W2909918885 hasBestOaLocation W29099188851 @default.
- W2909918885 hasConcept C102561126 @default.
- W2909918885 hasConcept C105306849 @default.
- W2909918885 hasConcept C119857082 @default.
- W2909918885 hasConcept C127313418 @default.
- W2909918885 hasConcept C153294291 @default.
- W2909918885 hasConcept C154108245 @default.
- W2909918885 hasConcept C205649164 @default.
- W2909918885 hasConcept C22818535 @default.
- W2909918885 hasConcept C2777864850 @default.
- W2909918885 hasConcept C29141058 @default.
- W2909918885 hasConcept C39432304 @default.
- W2909918885 hasConcept C41008148 @default.
- W2909918885 hasConcept C42935608 @default.
- W2909918885 hasConcept C49204034 @default.
- W2909918885 hasConcept C50644808 @default.
- W2909918885 hasConcept C9390403 @default.
- W2909918885 hasConceptScore W2909918885C102561126 @default.
- W2909918885 hasConceptScore W2909918885C105306849 @default.
- W2909918885 hasConceptScore W2909918885C119857082 @default.
- W2909918885 hasConceptScore W2909918885C127313418 @default.
- W2909918885 hasConceptScore W2909918885C153294291 @default.
- W2909918885 hasConceptScore W2909918885C154108245 @default.
- W2909918885 hasConceptScore W2909918885C205649164 @default.
- W2909918885 hasConceptScore W2909918885C22818535 @default.
- W2909918885 hasConceptScore W2909918885C2777864850 @default.
- W2909918885 hasConceptScore W2909918885C29141058 @default.
- W2909918885 hasConceptScore W2909918885C39432304 @default.
- W2909918885 hasConceptScore W2909918885C41008148 @default.
- W2909918885 hasConceptScore W2909918885C42935608 @default.
- W2909918885 hasConceptScore W2909918885C49204034 @default.
- W2909918885 hasConceptScore W2909918885C50644808 @default.
- W2909918885 hasConceptScore W2909918885C9390403 @default.
- W2909918885 hasFunder F4320312773 @default.
- W2909918885 hasFunder F4320334822 @default.
- W2909918885 hasLocation W29099188851 @default.
- W2909918885 hasLocation W29099188852 @default.
- W2909918885 hasOpenAccess W2909918885 @default.
- W2909918885 hasPrimaryLocation W29099188851 @default.
- W2909918885 hasRelatedWork W1945409862 @default.
- W2909918885 hasRelatedWork W2269326131 @default.
- W2909918885 hasRelatedWork W2380927239 @default.
- W2909918885 hasRelatedWork W2383123565 @default.
- W2909918885 hasRelatedWork W2805620792 @default.
- W2909918885 hasRelatedWork W2806278975 @default.
- W2909918885 hasRelatedWork W2890516465 @default.
- W2909918885 hasRelatedWork W3106821310 @default.
- W2909918885 hasRelatedWork W4239525506 @default.
- W2909918885 hasRelatedWork W2586246175 @default.
- W2909918885 hasVolume "23" @default.
- W2909918885 isParatext "false" @default.
- W2909918885 isRetracted "false" @default.
- W2909918885 magId "2909918885" @default.
- W2909918885 workType "article" @default.