Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910043623> ?p ?o ?g. }
- W2910043623 abstract "Social networks have continuously been expanding and trying to be innovative. The recent advances of computing, caching, and communication (3C) can have significant impacts on mobile social networks (MSNs). MSNs can leverage these new paradigms to provide a new mechanism for users to share resources (e.g., information, computation-based services). In this chapter, we exploit the intrinsic nature of social networks, i.e., the trust formed through social relationships among users, to enable users to share resources under the framework of 3C. Specifically, we consider the mobile edge computing (MEC), in-network caching and device-to-device (D2D) communications. When considering the trust-based MSNs with MEC, caching and D2D, we apply a novel deep reinforcement learning approach to automatically make a decision for optimally allocating the network resources. The decision is made purely through observing the network’s states, rather than any handcrafted or explicit control rules, which makes it adaptive to variable network conditions. Google TensorFlow is used to implement the proposed deep Q-learning approach. Simulation results with different network parameters are presented to show the effectiveness of the proposed scheme." @default.
- W2910043623 created "2019-01-25" @default.
- W2910043623 creator A5001966447 @default.
- W2910043623 creator A5045828619 @default.
- W2910043623 date "2019-01-01" @default.
- W2910043623 modified "2023-09-24" @default.
- W2910043623 title "Deep Reinforcement Learning for Mobile Social Networks" @default.
- W2910043623 cites W1904504745 @default.
- W2910043623 cites W1964886742 @default.
- W2910043623 cites W1972458861 @default.
- W2910043623 cites W1997932713 @default.
- W2910043623 cites W2037169571 @default.
- W2910043623 cites W2039157284 @default.
- W2910043623 cites W2044576662 @default.
- W2910043623 cites W2062876061 @default.
- W2910043623 cites W2107008217 @default.
- W2910043623 cites W2110064631 @default.
- W2910043623 cites W2121756138 @default.
- W2910043623 cites W2123030505 @default.
- W2910043623 cites W2125890412 @default.
- W2910043623 cites W2148727578 @default.
- W2910043623 cites W2164599584 @default.
- W2910043623 cites W2195423816 @default.
- W2910043623 cites W2317156622 @default.
- W2910043623 cites W2343050074 @default.
- W2910043623 cites W2344423009 @default.
- W2910043623 cites W2399137150 @default.
- W2910043623 cites W2400829371 @default.
- W2910043623 cites W2511425482 @default.
- W2910043623 cites W2513133360 @default.
- W2910043623 cites W2516839461 @default.
- W2910043623 cites W2524013816 @default.
- W2910043623 cites W2531437790 @default.
- W2910043623 cites W2562105430 @default.
- W2910043623 cites W2590050480 @default.
- W2910043623 cites W2597098435 @default.
- W2910043623 cites W2603810864 @default.
- W2910043623 cites W2611041851 @default.
- W2910043623 cites W2615926310 @default.
- W2910043623 cites W2742128636 @default.
- W2910043623 cites W2744008461 @default.
- W2910043623 cites W2761862361 @default.
- W2910043623 cites W2766391153 @default.
- W2910043623 cites W2772526503 @default.
- W2910043623 cites W2963030716 @default.
- W2910043623 cites W2963447054 @default.
- W2910043623 cites W3098915991 @default.
- W2910043623 cites W4233806584 @default.
- W2910043623 cites W593593395 @default.
- W2910043623 doi "https://doi.org/10.1007/978-3-030-10546-4_4" @default.
- W2910043623 hasPublicationYear "2019" @default.
- W2910043623 type Work @default.
- W2910043623 sameAs 2910043623 @default.
- W2910043623 citedByCount "0" @default.
- W2910043623 crossrefType "book-chapter" @default.
- W2910043623 hasAuthorship W2910043623A5001966447 @default.
- W2910043623 hasAuthorship W2910043623A5045828619 @default.
- W2910043623 hasConcept C11413529 @default.
- W2910043623 hasConcept C120314980 @default.
- W2910043623 hasConcept C134306372 @default.
- W2910043623 hasConcept C136764020 @default.
- W2910043623 hasConcept C144543869 @default.
- W2910043623 hasConcept C153083717 @default.
- W2910043623 hasConcept C153646914 @default.
- W2910043623 hasConcept C154945302 @default.
- W2910043623 hasConcept C162307627 @default.
- W2910043623 hasConcept C165696696 @default.
- W2910043623 hasConcept C186967261 @default.
- W2910043623 hasConcept C2776061582 @default.
- W2910043623 hasConcept C2780228002 @default.
- W2910043623 hasConcept C31258907 @default.
- W2910043623 hasConcept C33923547 @default.
- W2910043623 hasConcept C38652104 @default.
- W2910043623 hasConcept C41008148 @default.
- W2910043623 hasConcept C45374587 @default.
- W2910043623 hasConcept C4727928 @default.
- W2910043623 hasConcept C518677369 @default.
- W2910043623 hasConcept C77618280 @default.
- W2910043623 hasConcept C97541855 @default.
- W2910043623 hasConceptScore W2910043623C11413529 @default.
- W2910043623 hasConceptScore W2910043623C120314980 @default.
- W2910043623 hasConceptScore W2910043623C134306372 @default.
- W2910043623 hasConceptScore W2910043623C136764020 @default.
- W2910043623 hasConceptScore W2910043623C144543869 @default.
- W2910043623 hasConceptScore W2910043623C153083717 @default.
- W2910043623 hasConceptScore W2910043623C153646914 @default.
- W2910043623 hasConceptScore W2910043623C154945302 @default.
- W2910043623 hasConceptScore W2910043623C162307627 @default.
- W2910043623 hasConceptScore W2910043623C165696696 @default.
- W2910043623 hasConceptScore W2910043623C186967261 @default.
- W2910043623 hasConceptScore W2910043623C2776061582 @default.
- W2910043623 hasConceptScore W2910043623C2780228002 @default.
- W2910043623 hasConceptScore W2910043623C31258907 @default.
- W2910043623 hasConceptScore W2910043623C33923547 @default.
- W2910043623 hasConceptScore W2910043623C38652104 @default.
- W2910043623 hasConceptScore W2910043623C41008148 @default.
- W2910043623 hasConceptScore W2910043623C45374587 @default.
- W2910043623 hasConceptScore W2910043623C4727928 @default.
- W2910043623 hasConceptScore W2910043623C518677369 @default.
- W2910043623 hasConceptScore W2910043623C77618280 @default.