Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910081881> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2910081881 endingPage "746" @default.
- W2910081881 startingPage "740" @default.
- W2910081881 abstract "With increased human–robot interactions in industrial settings, a safe and reliable collision detection framework has become an indispensable element of collaborative robots. The conventional framework detects collisions by estimating collision monitoring signals with a particular type of observer, which is followed by collision decision processes. This results in unavoidable tradeoff between sensitivity to collisions and robustness to false alarms. In this study, we propose a collision detection framework (CollisionNet) based on a deep learning approach. We designed a deep neural network model to learn robot collision signals and recognize any occurrence of a collision. This data-driven approach unifies feature extraction from high-dimensional signals and the decision processes. CollisionNet eliminates heuristic and cumbersome nature of the traditional decision processes, showing high detection performance and generalization capability in real time. We verified the performance of the proposed framework through various experiments." @default.
- W2910081881 created "2019-01-25" @default.
- W2910081881 creator A5000620760 @default.
- W2910081881 creator A5001562173 @default.
- W2910081881 creator A5008476367 @default.
- W2910081881 creator A5020648634 @default.
- W2910081881 creator A5031845322 @default.
- W2910081881 creator A5052062395 @default.
- W2910081881 date "2019-04-01" @default.
- W2910081881 modified "2023-10-03" @default.
- W2910081881 title "Collision Detection for Industrial Collaborative Robots: A Deep Learning Approach" @default.
- W2910081881 cites W1583646749 @default.
- W2910081881 cites W1995213905 @default.
- W2910081881 cites W2058288278 @default.
- W2910081881 cites W2064675550 @default.
- W2910081881 cites W2116139612 @default.
- W2910081881 cites W2127106540 @default.
- W2910081881 cites W2131292439 @default.
- W2910081881 cites W2144907335 @default.
- W2910081881 cites W2241938808 @default.
- W2910081881 cites W2302290679 @default.
- W2910081881 cites W2419360510 @default.
- W2910081881 cites W2736449616 @default.
- W2910081881 cites W2762248135 @default.
- W2910081881 cites W2766150889 @default.
- W2910081881 doi "https://doi.org/10.1109/lra.2019.2893400" @default.
- W2910081881 hasPublicationYear "2019" @default.
- W2910081881 type Work @default.
- W2910081881 sameAs 2910081881 @default.
- W2910081881 citedByCount "87" @default.
- W2910081881 countsByYear W29100818812019 @default.
- W2910081881 countsByYear W29100818812020 @default.
- W2910081881 countsByYear W29100818812021 @default.
- W2910081881 countsByYear W29100818812022 @default.
- W2910081881 countsByYear W29100818812023 @default.
- W2910081881 crossrefType "journal-article" @default.
- W2910081881 hasAuthorship W2910081881A5000620760 @default.
- W2910081881 hasAuthorship W2910081881A5001562173 @default.
- W2910081881 hasAuthorship W2910081881A5008476367 @default.
- W2910081881 hasAuthorship W2910081881A5020648634 @default.
- W2910081881 hasAuthorship W2910081881A5031845322 @default.
- W2910081881 hasAuthorship W2910081881A5052062395 @default.
- W2910081881 hasConcept C107457646 @default.
- W2910081881 hasConcept C108583219 @default.
- W2910081881 hasConcept C121704057 @default.
- W2910081881 hasConcept C154945302 @default.
- W2910081881 hasConcept C199668693 @default.
- W2910081881 hasConcept C2780864053 @default.
- W2910081881 hasConcept C38652104 @default.
- W2910081881 hasConcept C41008148 @default.
- W2910081881 hasConcept C90509273 @default.
- W2910081881 hasConceptScore W2910081881C107457646 @default.
- W2910081881 hasConceptScore W2910081881C108583219 @default.
- W2910081881 hasConceptScore W2910081881C121704057 @default.
- W2910081881 hasConceptScore W2910081881C154945302 @default.
- W2910081881 hasConceptScore W2910081881C199668693 @default.
- W2910081881 hasConceptScore W2910081881C2780864053 @default.
- W2910081881 hasConceptScore W2910081881C38652104 @default.
- W2910081881 hasConceptScore W2910081881C41008148 @default.
- W2910081881 hasConceptScore W2910081881C90509273 @default.
- W2910081881 hasFunder F4320327819 @default.
- W2910081881 hasIssue "2" @default.
- W2910081881 hasLocation W29100818811 @default.
- W2910081881 hasOpenAccess W2910081881 @default.
- W2910081881 hasPrimaryLocation W29100818811 @default.
- W2910081881 hasRelatedWork W144126021 @default.
- W2910081881 hasRelatedWork W1450572252 @default.
- W2910081881 hasRelatedWork W2074574557 @default.
- W2910081881 hasRelatedWork W2109046528 @default.
- W2910081881 hasRelatedWork W2126654773 @default.
- W2910081881 hasRelatedWork W2154777391 @default.
- W2910081881 hasRelatedWork W2221590109 @default.
- W2910081881 hasRelatedWork W2350363922 @default.
- W2910081881 hasRelatedWork W3095911557 @default.
- W2910081881 hasRelatedWork W38432629 @default.
- W2910081881 hasVolume "4" @default.
- W2910081881 isParatext "false" @default.
- W2910081881 isRetracted "false" @default.
- W2910081881 magId "2910081881" @default.
- W2910081881 workType "article" @default.