Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910120163> ?p ?o ?g. }
- W2910120163 abstract "Abstract The majority of clinical trial failures are caused by low efficacy of investigated drugs, often due to a poor choice of target protein. Computational prioritization approaches aim to support target selection by ranking candidate targets in the context of a given disease. We propose a novel target prioritization approach, GuiltyTargets, which relies on deep network representation learning of a genome-wide protein-protein interaction network annotated with disease-specific differential gene expression and uses positive-unlabeled machine learning for candidate ranking. We evaluated our approach on six diseases of different types (cancer, metabolic, neurodegenerative) within a 10 times repeated 5-fold stratified cross-validation and achieved AUROC values between 0.92 - 0.94, significantly outperforming a previous approach, which relies on manually engineered topological features. Moreover, we showed that GuiltyTargets allows for target repositioning across related disease areas. Applying GuiltyTargets to Alzheimer’s disease resulted into a number of highly ranked candidates that are currently discussed as targets in the literature. Interestingly, one (COMT) is also the target of an approved drug (Tolcapone) for Parkinson’s disease, highlighting the potential for target repositioning of our method. Availability The GuiltyTargets Python package is available on PyPI and all code used for analysis can be found under the MIT License at https://github.com/GuiltyTargets . Author summary Many drug candidates fail in clinical trials due to low efficacy. One of the reasons is the choice of the wrong target protein, i.e. perturbation of the protein does not effectively modulate the disease phenotype on a molecular level. In consequence many patients do not demonstrate a clear response to the drug candidate. Traditionally, targets are selected based on evidence from the literature and follow-up experiments. However, this process is very labor intensive and often biased by subjective choices. Computational tools could help a more rational and unbiased choice of target proteins and thus increase the chance of drug discovery programs. In this work we propose a novel machine learning based method for target candidate ranking. The method (GuiltyTargets) captures properties of known targets to learn a ranking of candidates. GuiltyTargets compares favorably against existing machine learning based target prioritization methods and allowed us to propose novel targets for Alzheimer’s disease." @default.
- W2910120163 created "2019-01-25" @default.
- W2910120163 creator A5005570941 @default.
- W2910120163 creator A5013339877 @default.
- W2910120163 creator A5065488553 @default.
- W2910120163 creator A5066807087 @default.
- W2910120163 date "2019-01-16" @default.
- W2910120163 modified "2023-10-14" @default.
- W2910120163 title "GuiltyTargets: Prioritization of Novel Therapeutic Targets with Deep Network Representation Learning" @default.
- W2910120163 cites W1500036797 @default.
- W2910120163 cites W1593505700 @default.
- W2910120163 cites W1605885548 @default.
- W2910120163 cites W1967286178 @default.
- W2910120163 cites W1973094248 @default.
- W2910120163 cites W1978839489 @default.
- W2910120163 cites W1984389071 @default.
- W2910120163 cites W2002330353 @default.
- W2910120163 cites W2006185455 @default.
- W2910120163 cites W2010022125 @default.
- W2910120163 cites W2020541351 @default.
- W2910120163 cites W2037935996 @default.
- W2910120163 cites W2065540447 @default.
- W2910120163 cites W2070053976 @default.
- W2910120163 cites W2088545291 @default.
- W2910120163 cites W2100239923 @default.
- W2910120163 cites W2110065044 @default.
- W2910120163 cites W2113951828 @default.
- W2910120163 cites W2118953105 @default.
- W2910120163 cites W2120600363 @default.
- W2910120163 cites W2140239055 @default.
- W2910120163 cites W2146512944 @default.
- W2910120163 cites W2170283814 @default.
- W2910120163 cites W2266524792 @default.
- W2910120163 cites W2285480412 @default.
- W2910120163 cites W2410375143 @default.
- W2910120163 cites W2410743230 @default.
- W2910120163 cites W2483054670 @default.
- W2910120163 cites W2519842263 @default.
- W2910120163 cites W2531904292 @default.
- W2910120163 cites W2534390616 @default.
- W2910120163 cites W2537623931 @default.
- W2910120163 cites W2558217333 @default.
- W2910120163 cites W2592839484 @default.
- W2910120163 cites W2610795807 @default.
- W2910120163 cites W2744720080 @default.
- W2910120163 cites W2753633147 @default.
- W2910120163 cites W2772340642 @default.
- W2910120163 cites W2801306368 @default.
- W2910120163 cites W2804633924 @default.
- W2910120163 cites W2808373515 @default.
- W2910120163 cites W2883033187 @default.
- W2910120163 cites W2889790826 @default.
- W2910120163 cites W2892573831 @default.
- W2910120163 cites W2950753203 @default.
- W2910120163 cites W4211118181 @default.
- W2910120163 cites W4238281998 @default.
- W2910120163 doi "https://doi.org/10.1101/521161" @default.
- W2910120163 hasPublicationYear "2019" @default.
- W2910120163 type Work @default.
- W2910120163 sameAs 2910120163 @default.
- W2910120163 citedByCount "0" @default.
- W2910120163 crossrefType "posted-content" @default.
- W2910120163 hasAuthorship W2910120163A5005570941 @default.
- W2910120163 hasAuthorship W2910120163A5013339877 @default.
- W2910120163 hasAuthorship W2910120163A5065488553 @default.
- W2910120163 hasAuthorship W2910120163A5066807087 @default.
- W2910120163 hasBestOaLocation W29101201631 @default.
- W2910120163 hasConcept C108583219 @default.
- W2910120163 hasConcept C119857082 @default.
- W2910120163 hasConcept C12267149 @default.
- W2910120163 hasConcept C142724271 @default.
- W2910120163 hasConcept C151730666 @default.
- W2910120163 hasConcept C154945302 @default.
- W2910120163 hasConcept C162324750 @default.
- W2910120163 hasConcept C2777615720 @default.
- W2910120163 hasConcept C2779134260 @default.
- W2910120163 hasConcept C2779343474 @default.
- W2910120163 hasConcept C41008148 @default.
- W2910120163 hasConcept C539667460 @default.
- W2910120163 hasConcept C70721500 @default.
- W2910120163 hasConcept C71924100 @default.
- W2910120163 hasConcept C86803240 @default.
- W2910120163 hasConceptScore W2910120163C108583219 @default.
- W2910120163 hasConceptScore W2910120163C119857082 @default.
- W2910120163 hasConceptScore W2910120163C12267149 @default.
- W2910120163 hasConceptScore W2910120163C142724271 @default.
- W2910120163 hasConceptScore W2910120163C151730666 @default.
- W2910120163 hasConceptScore W2910120163C154945302 @default.
- W2910120163 hasConceptScore W2910120163C162324750 @default.
- W2910120163 hasConceptScore W2910120163C2777615720 @default.
- W2910120163 hasConceptScore W2910120163C2779134260 @default.
- W2910120163 hasConceptScore W2910120163C2779343474 @default.
- W2910120163 hasConceptScore W2910120163C41008148 @default.
- W2910120163 hasConceptScore W2910120163C539667460 @default.
- W2910120163 hasConceptScore W2910120163C70721500 @default.
- W2910120163 hasConceptScore W2910120163C71924100 @default.
- W2910120163 hasConceptScore W2910120163C86803240 @default.
- W2910120163 hasLocation W29101201631 @default.
- W2910120163 hasLocation W29101201632 @default.
- W2910120163 hasOpenAccess W2910120163 @default.