Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910259740> ?p ?o ?g. }
- W2910259740 endingPage "2935" @default.
- W2910259740 startingPage "2921" @default.
- W2910259740 abstract "Structural information, in particular, the edges present in an image, is the most important part to be noticed by human eyes. Therefore, it is important to denoise this information effectively for better visualization. Recently, research work has been carried out to characterize the structural information into plain and edge patches and denoise them separately. However, the information about the geometrical orientation of the edges is not considered, leading to sub-optimal denoising results. This has motivated us to introduce in this paper an adaptive steerable total variation regularizer (ASTV) based on geometric moments. The proposed ASTV regularizer is capable of denoising the edges based on their geometrical orientation, thus boosting the denoising performance. Further, earlier works exploited the sparsity of the natural images in DCT and wavelet domains which help in improving the denoising performance. Based on this observation, we introduce the sparsity of an image in orthogonal moment domain, in particular, the Tchebichef moment. Then, we propose a new sparse regularizer, which is a combination of the Tchebichef moment and ASTV-based regularizers. The overall denoising framework is optimized using split Bregman-based multivariable minimization technique. Experimental results demonstrate the competitiveness of the proposed method compared with the existing ones in terms of both the objective and subjective image qualities." @default.
- W2910259740 created "2019-01-25" @default.
- W2910259740 creator A5013967994 @default.
- W2910259740 creator A5026670559 @default.
- W2910259740 creator A5068820891 @default.
- W2910259740 date "2019-06-01" @default.
- W2910259740 modified "2023-10-14" @default.
- W2910259740 title "Tchebichef and Adaptive Steerable-Based Total Variation Model for Image Denoising" @default.
- W2910259740 cites W1605636162 @default.
- W2910259740 cites W1802798319 @default.
- W2910259740 cites W1832847456 @default.
- W2910259740 cites W1846094795 @default.
- W2910259740 cites W1895161527 @default.
- W2910259740 cites W1915372217 @default.
- W2910259740 cites W1978749115 @default.
- W2910259740 cites W1993296994 @default.
- W2910259740 cites W2006262236 @default.
- W2910259740 cites W2011181254 @default.
- W2910259740 cites W2016670111 @default.
- W2910259740 cites W2020989074 @default.
- W2910259740 cites W2030227949 @default.
- W2910259740 cites W2030620341 @default.
- W2910259740 cites W2034252197 @default.
- W2910259740 cites W2039939700 @default.
- W2910259740 cites W2040576696 @default.
- W2910259740 cites W2042220165 @default.
- W2910259740 cites W2042984553 @default.
- W2910259740 cites W2045079989 @default.
- W2910259740 cites W2045737896 @default.
- W2910259740 cites W2056370875 @default.
- W2910259740 cites W2065900551 @default.
- W2910259740 cites W2069441534 @default.
- W2910259740 cites W2075858322 @default.
- W2910259740 cites W2083059319 @default.
- W2910259740 cites W2083609718 @default.
- W2910259740 cites W2085692415 @default.
- W2910259740 cites W2086936614 @default.
- W2910259740 cites W2097073572 @default.
- W2910259740 cites W2101455165 @default.
- W2910259740 cites W2103559027 @default.
- W2910259740 cites W2103913786 @default.
- W2910259740 cites W2114415799 @default.
- W2910259740 cites W2116886646 @default.
- W2910259740 cites W2117406282 @default.
- W2910259740 cites W2124041826 @default.
- W2910259740 cites W2125527601 @default.
- W2910259740 cites W2132555912 @default.
- W2910259740 cites W2133665775 @default.
- W2910259740 cites W2135065661 @default.
- W2910259740 cites W2139496607 @default.
- W2910259740 cites W2142058898 @default.
- W2910259740 cites W2147091768 @default.
- W2910259740 cites W2153663612 @default.
- W2910259740 cites W2161219071 @default.
- W2910259740 cites W2168226778 @default.
- W2910259740 cites W2201308850 @default.
- W2910259740 cites W2276813783 @default.
- W2910259740 cites W2294238592 @default.
- W2910259740 cites W2295875382 @default.
- W2910259740 cites W2338117771 @default.
- W2910259740 cites W2411544526 @default.
- W2910259740 cites W2466355387 @default.
- W2910259740 cites W2527004316 @default.
- W2910259740 cites W2546881355 @default.
- W2910259740 cites W2963518736 @default.
- W2910259740 cites W4246327874 @default.
- W2910259740 doi "https://doi.org/10.1109/tip.2019.2892663" @default.
- W2910259740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30668499" @default.
- W2910259740 hasPublicationYear "2019" @default.
- W2910259740 type Work @default.
- W2910259740 sameAs 2910259740 @default.
- W2910259740 citedByCount "29" @default.
- W2910259740 countsByYear W29102597402019 @default.
- W2910259740 countsByYear W29102597402020 @default.
- W2910259740 countsByYear W29102597402021 @default.
- W2910259740 countsByYear W29102597402022 @default.
- W2910259740 countsByYear W29102597402023 @default.
- W2910259740 crossrefType "journal-article" @default.
- W2910259740 hasAuthorship W2910259740A5013967994 @default.
- W2910259740 hasAuthorship W2910259740A5026670559 @default.
- W2910259740 hasAuthorship W2910259740A5068820891 @default.
- W2910259740 hasConcept C121332964 @default.
- W2910259740 hasConcept C153180895 @default.
- W2910259740 hasConcept C154945302 @default.
- W2910259740 hasConcept C162307627 @default.
- W2910259740 hasConcept C163294075 @default.
- W2910259740 hasConcept C16345878 @default.
- W2910259740 hasConcept C179254644 @default.
- W2910259740 hasConcept C2524010 @default.
- W2910259740 hasConcept C31972630 @default.
- W2910259740 hasConcept C33923547 @default.
- W2910259740 hasConcept C36464697 @default.
- W2910259740 hasConcept C41008148 @default.
- W2910259740 hasConcept C46686674 @default.
- W2910259740 hasConcept C47432892 @default.
- W2910259740 hasConcept C74650414 @default.
- W2910259740 hasConceptScore W2910259740C121332964 @default.
- W2910259740 hasConceptScore W2910259740C153180895 @default.