Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910278636> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2910278636 abstract "Due to low training complexity, high stability, quick convergence and simple construction, the probabilistic neural network (PNN) has got extensive application in many fields. Because of the lack of additional weighting factors inside PNN model structure, the PNN using the Sensitivity Analysis (SA) has been improved in this paper. The weight coefficients and compensating factors are introduced into the network and put between pattern layer and summation layer to create the weighted probabilistic neural network (WPNN). The weights are derived using the sensitivity analysis procedure when the radial kernels are used as the output of the pattern layer. At the same time, compensating factors compensate the impact of the SA among the patterns. The performance of the WPNN is examined in contradistinctive experiments. Meanwhile, WPNN is used in fault diagnosis of the aircraft wing skin to prove feasibility of WPNN. The results show that the WPNN is feasible and has better performance in prediction accuracy." @default.
- W2910278636 created "2019-01-25" @default.
- W2910278636 creator A5060556888 @default.
- W2910278636 creator A5065120637 @default.
- W2910278636 creator A5088005692 @default.
- W2910278636 date "2018-10-01" @default.
- W2910278636 modified "2023-09-23" @default.
- W2910278636 title "Weighted Probabilistic Neural Network Based on the Sensitivity Analysis" @default.
- W2910278636 cites W1480589851 @default.
- W2910278636 cites W1967071633 @default.
- W2910278636 cites W1981530348 @default.
- W2910278636 cites W1987408329 @default.
- W2910278636 cites W2068768759 @default.
- W2910278636 cites W2076946881 @default.
- W2910278636 cites W2084133018 @default.
- W2910278636 cites W2093906147 @default.
- W2910278636 cites W2132915507 @default.
- W2910278636 cites W2140542189 @default.
- W2910278636 cites W2169554323 @default.
- W2910278636 cites W2296881779 @default.
- W2910278636 cites W2529171205 @default.
- W2910278636 cites W2606744497 @default.
- W2910278636 cites W2768781176 @default.
- W2910278636 cites W2772283236 @default.
- W2910278636 cites W4248552061 @default.
- W2910278636 cites W4301422714 @default.
- W2910278636 cites W621058822 @default.
- W2910278636 doi "https://doi.org/10.1109/phm-chongqing.2018.00186" @default.
- W2910278636 hasPublicationYear "2018" @default.
- W2910278636 type Work @default.
- W2910278636 sameAs 2910278636 @default.
- W2910278636 citedByCount "0" @default.
- W2910278636 crossrefType "proceedings-article" @default.
- W2910278636 hasAuthorship W2910278636A5060556888 @default.
- W2910278636 hasAuthorship W2910278636A5065120637 @default.
- W2910278636 hasAuthorship W2910278636A5088005692 @default.
- W2910278636 hasConcept C127413603 @default.
- W2910278636 hasConcept C134342201 @default.
- W2910278636 hasConcept C153180895 @default.
- W2910278636 hasConcept C154945302 @default.
- W2910278636 hasConcept C175202392 @default.
- W2910278636 hasConcept C21200559 @default.
- W2910278636 hasConcept C24326235 @default.
- W2910278636 hasConcept C41008148 @default.
- W2910278636 hasConcept C49937458 @default.
- W2910278636 hasConcept C50644808 @default.
- W2910278636 hasConceptScore W2910278636C127413603 @default.
- W2910278636 hasConceptScore W2910278636C134342201 @default.
- W2910278636 hasConceptScore W2910278636C153180895 @default.
- W2910278636 hasConceptScore W2910278636C154945302 @default.
- W2910278636 hasConceptScore W2910278636C175202392 @default.
- W2910278636 hasConceptScore W2910278636C21200559 @default.
- W2910278636 hasConceptScore W2910278636C24326235 @default.
- W2910278636 hasConceptScore W2910278636C41008148 @default.
- W2910278636 hasConceptScore W2910278636C49937458 @default.
- W2910278636 hasConceptScore W2910278636C50644808 @default.
- W2910278636 hasLocation W29102786361 @default.
- W2910278636 hasOpenAccess W2910278636 @default.
- W2910278636 hasPrimaryLocation W29102786361 @default.
- W2910278636 hasRelatedWork W1975643538 @default.
- W2910278636 hasRelatedWork W2048220287 @default.
- W2910278636 hasRelatedWork W2067837718 @default.
- W2910278636 hasRelatedWork W2125123064 @default.
- W2910278636 hasRelatedWork W2236741694 @default.
- W2910278636 hasRelatedWork W2355754418 @default.
- W2910278636 hasRelatedWork W2355766745 @default.
- W2910278636 hasRelatedWork W2361455248 @default.
- W2910278636 hasRelatedWork W2366244137 @default.
- W2910278636 hasRelatedWork W2381770184 @default.
- W2910278636 isParatext "false" @default.
- W2910278636 isRetracted "false" @default.
- W2910278636 magId "2910278636" @default.
- W2910278636 workType "article" @default.