Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910282362> ?p ?o ?g. }
- W2910282362 endingPage "451" @default.
- W2910282362 startingPage "440" @default.
- W2910282362 abstract "Swarm intelligence (SI)-based optimization methods have been extensively used to tackle feature selection problems. A feature selection method extracts the most significant features and removes irrelevant ones from the data set, in order to reduce feature dimensionality and improve the classification accuracy. This paper combines the incremental learning Fuzzy Min–Max (FMM) neural network and Brain Storm Optimization (BSO) to undertake feature selection and classification problems. Firstly, FMM is used to create a number of hyperboxes incrementally. BSO, which is inspired by the human brainstorming process, is then employed to search for an optimal feature subset. Ten benchmark problems and a real-world case study are conducted to evaluate the effectiveness of the proposed FMM-BSO. In addition, the bootstrap method with the 95% confidence intervals is used to quantify the results statistically. The experimental results indicate that FMM-BSO is able to produce promising results as compared with those from the original FMM network and other state-of-the-art feature selection methods such as particle swarm optimization, genetic algorithm, and ant lion optimization." @default.
- W2910282362 created "2019-01-25" @default.
- W2910282362 creator A5000919145 @default.
- W2910282362 creator A5031691031 @default.
- W2910282362 creator A5033532011 @default.
- W2910282362 creator A5072923302 @default.
- W2910282362 creator A5073006299 @default.
- W2910282362 creator A5008265817 @default.
- W2910282362 date "2019-03-01" @default.
- W2910282362 modified "2023-10-17" @default.
- W2910282362 title "A hybrid model of fuzzy min–max and brain storm optimization for feature selection and data classification" @default.
- W2910282362 cites W1444952417 @default.
- W2910282362 cites W1970204203 @default.
- W2910282362 cites W1974186662 @default.
- W2910282362 cites W1975586526 @default.
- W2910282362 cites W2000353609 @default.
- W2910282362 cites W2001979953 @default.
- W2910282362 cites W2007187232 @default.
- W2910282362 cites W2013885787 @default.
- W2910282362 cites W2014915963 @default.
- W2910282362 cites W2016883203 @default.
- W2910282362 cites W2018401509 @default.
- W2910282362 cites W2020355555 @default.
- W2910282362 cites W2020634673 @default.
- W2910282362 cites W2023459309 @default.
- W2910282362 cites W2037452557 @default.
- W2910282362 cites W2052272326 @default.
- W2910282362 cites W2068431618 @default.
- W2910282362 cites W2070611982 @default.
- W2910282362 cites W2082381659 @default.
- W2910282362 cites W2083945868 @default.
- W2910282362 cites W2093799708 @default.
- W2910282362 cites W2106980479 @default.
- W2910282362 cites W2117897510 @default.
- W2910282362 cites W2120216197 @default.
- W2910282362 cites W2122825543 @default.
- W2910282362 cites W2124258777 @default.
- W2910282362 cites W2139974998 @default.
- W2910282362 cites W2144219012 @default.
- W2910282362 cites W2166317455 @default.
- W2910282362 cites W2167190135 @default.
- W2910282362 cites W2168603260 @default.
- W2910282362 cites W2169437694 @default.
- W2910282362 cites W2189271890 @default.
- W2910282362 cites W2287654067 @default.
- W2910282362 cites W2310225923 @default.
- W2910282362 cites W2461302873 @default.
- W2910282362 cites W2535163233 @default.
- W2910282362 cites W2591025119 @default.
- W2910282362 cites W2604226975 @default.
- W2910282362 cites W2605902561 @default.
- W2910282362 cites W2610903531 @default.
- W2910282362 cites W2754840697 @default.
- W2910282362 cites W2774064330 @default.
- W2910282362 cites W2789332443 @default.
- W2910282362 cites W2801536506 @default.
- W2910282362 cites W2890843359 @default.
- W2910282362 cites W2891516347 @default.
- W2910282362 doi "https://doi.org/10.1016/j.neucom.2019.01.011" @default.
- W2910282362 hasPublicationYear "2019" @default.
- W2910282362 type Work @default.
- W2910282362 sameAs 2910282362 @default.
- W2910282362 citedByCount "47" @default.
- W2910282362 countsByYear W29102823622019 @default.
- W2910282362 countsByYear W29102823622020 @default.
- W2910282362 countsByYear W29102823622021 @default.
- W2910282362 countsByYear W29102823622022 @default.
- W2910282362 countsByYear W29102823622023 @default.
- W2910282362 crossrefType "journal-article" @default.
- W2910282362 hasAuthorship W2910282362A5000919145 @default.
- W2910282362 hasAuthorship W2910282362A5008265817 @default.
- W2910282362 hasAuthorship W2910282362A5031691031 @default.
- W2910282362 hasAuthorship W2910282362A5033532011 @default.
- W2910282362 hasAuthorship W2910282362A5072923302 @default.
- W2910282362 hasAuthorship W2910282362A5073006299 @default.
- W2910282362 hasConcept C111030470 @default.
- W2910282362 hasConcept C119857082 @default.
- W2910282362 hasConcept C124101348 @default.
- W2910282362 hasConcept C13280743 @default.
- W2910282362 hasConcept C138885662 @default.
- W2910282362 hasConcept C148483581 @default.
- W2910282362 hasConcept C153180895 @default.
- W2910282362 hasConcept C154945302 @default.
- W2910282362 hasConcept C185798385 @default.
- W2910282362 hasConcept C205649164 @default.
- W2910282362 hasConcept C2776401178 @default.
- W2910282362 hasConcept C40128228 @default.
- W2910282362 hasConcept C41008148 @default.
- W2910282362 hasConcept C41895202 @default.
- W2910282362 hasConcept C50644808 @default.
- W2910282362 hasConcept C81917197 @default.
- W2910282362 hasConcept C85617194 @default.
- W2910282362 hasConceptScore W2910282362C111030470 @default.
- W2910282362 hasConceptScore W2910282362C119857082 @default.
- W2910282362 hasConceptScore W2910282362C124101348 @default.
- W2910282362 hasConceptScore W2910282362C13280743 @default.
- W2910282362 hasConceptScore W2910282362C138885662 @default.
- W2910282362 hasConceptScore W2910282362C148483581 @default.