Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910347191> ?p ?o ?g. }
- W2910347191 endingPage "4159" @default.
- W2910347191 startingPage "4145" @default.
- W2910347191 abstract "After reacting with hydrogen peroxide (H2O2), sickle-cell hemoglobin (HbS, βE6V) remains longer in a highly oxidizing ferryl form (HbFe4+=O) and induces irreversible oxidation of “hot-spot” amino acids, including βCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in β subunits (F41Y), a substitution present in Hb Mequon; the second contained the Asp (K82D) found in the β cleft of Hb Providence; and the third had both of these β substitutions. Both the single Tyr-41 and Asp-82 constructs lowered the oxygen affinity of HbS but had little or no effects on autoxidation or heme loss kinetics. In the presence of H2O2, both rHbS βF41Y and βF41Y/K82D enhanced ferryl Hb reduction by providing a pathway for electrons to reduce the heme via the Tyr-41 side chain. MS analysis of βCys-93 revealed moderate inhibition of thiol oxidation in the HbS single F41Y variant and dramatic 3- to 8-fold inhibition of cysteic acid formation in rHbS βK82D and βF41Y/K82D, respectively. Under hypoxia, βK82D and βF41Y/K82D HbS substitutions increased the delay time by ∼250 and 600 s before the onset of polymerization compared with the rHbS control and rHbS βF41Y, respectively. Moreover, at 60 °C, rHbS βK82D exhibited superior structural stability. Asp-82 also enhanced the function of Tyr as a redox-active amino acid in the rHbS βF41Y/K82D variant. We conclude that the βK82D and βF41Y substitutions add significant resistance to oxidative stress and anti-sickling properties to HbS and therefore could be potential genome-editing targets. After reacting with hydrogen peroxide (H2O2), sickle-cell hemoglobin (HbS, βE6V) remains longer in a highly oxidizing ferryl form (HbFe4+=O) and induces irreversible oxidation of “hot-spot” amino acids, including βCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in β subunits (F41Y), a substitution present in Hb Mequon; the second contained the Asp (K82D) found in the β cleft of Hb Providence; and the third had both of these β substitutions. Both the single Tyr-41 and Asp-82 constructs lowered the oxygen affinity of HbS but had little or no effects on autoxidation or heme loss kinetics. In the presence of H2O2, both rHbS βF41Y and βF41Y/K82D enhanced ferryl Hb reduction by providing a pathway for electrons to reduce the heme via the Tyr-41 side chain. MS analysis of βCys-93 revealed moderate inhibition of thiol oxidation in the HbS single F41Y variant and dramatic 3- to 8-fold inhibition of cysteic acid formation in rHbS βK82D and βF41Y/K82D, respectively. Under hypoxia, βK82D and βF41Y/K82D HbS substitutions increased the delay time by ∼250 and 600 s before the onset of polymerization compared with the rHbS control and rHbS βF41Y, respectively. Moreover, at 60 °C, rHbS βK82D exhibited superior structural stability. Asp-82 also enhanced the function of Tyr as a redox-active amino acid in the rHbS βF41Y/K82D variant. We conclude that the βK82D and βF41Y substitutions add significant resistance to oxidative stress and anti-sickling properties to HbS and therefore could be potential genome-editing targets." @default.
- W2910347191 created "2019-01-25" @default.
- W2910347191 creator A5011811865 @default.
- W2910347191 creator A5017318009 @default.
- W2910347191 creator A5063018733 @default.
- W2910347191 creator A5064798059 @default.
- W2910347191 creator A5078428252 @default.
- W2910347191 date "2019-03-01" @default.
- W2910347191 modified "2023-10-01" @default.
- W2910347191 title "Substitutions in the β subunits of sickle-cell hemoglobin improve oxidative stability and increase the delay time of sickle-cell fiber formation" @default.
- W2910347191 cites W1536392599 @default.
- W2910347191 cites W1604356881 @default.
- W2910347191 cites W1798020902 @default.
- W2910347191 cites W1917692658 @default.
- W2910347191 cites W191793640 @default.
- W2910347191 cites W1970045226 @default.
- W2910347191 cites W1970481522 @default.
- W2910347191 cites W1984887661 @default.
- W2910347191 cites W1987037884 @default.
- W2910347191 cites W1990714537 @default.
- W2910347191 cites W1990715776 @default.
- W2910347191 cites W2015478873 @default.
- W2910347191 cites W2018252877 @default.
- W2910347191 cites W2023901815 @default.
- W2910347191 cites W2024968752 @default.
- W2910347191 cites W2026022208 @default.
- W2910347191 cites W2026254409 @default.
- W2910347191 cites W2028226298 @default.
- W2910347191 cites W2037107150 @default.
- W2910347191 cites W2037418958 @default.
- W2910347191 cites W2047368739 @default.
- W2910347191 cites W2050905302 @default.
- W2910347191 cites W2052431602 @default.
- W2910347191 cites W2053295036 @default.
- W2910347191 cites W2053495832 @default.
- W2910347191 cites W2059059034 @default.
- W2910347191 cites W2065179469 @default.
- W2910347191 cites W2066806328 @default.
- W2910347191 cites W2066856450 @default.
- W2910347191 cites W2071030908 @default.
- W2910347191 cites W2092199204 @default.
- W2910347191 cites W2093712211 @default.
- W2910347191 cites W2103574978 @default.
- W2910347191 cites W2112078820 @default.
- W2910347191 cites W2130756852 @default.
- W2910347191 cites W2159977704 @default.
- W2910347191 cites W2168339659 @default.
- W2910347191 cites W2268926268 @default.
- W2910347191 cites W2278275104 @default.
- W2910347191 cites W2318246879 @default.
- W2910347191 cites W2319238142 @default.
- W2910347191 cites W2337357834 @default.
- W2910347191 cites W2412582674 @default.
- W2910347191 cites W2483601097 @default.
- W2910347191 cites W2547062283 @default.
- W2910347191 cites W2562674971 @default.
- W2910347191 cites W2569601913 @default.
- W2910347191 cites W2571459768 @default.
- W2910347191 cites W2589885718 @default.
- W2910347191 cites W2605267194 @default.
- W2910347191 cites W2766552047 @default.
- W2910347191 cites W2775070965 @default.
- W2910347191 cites W2782382390 @default.
- W2910347191 cites W2803334048 @default.
- W2910347191 cites W2896222092 @default.
- W2910347191 cites W4211186710 @default.
- W2910347191 cites W4241352628 @default.
- W2910347191 cites W4244285800 @default.
- W2910347191 cites W4254888181 @default.
- W2910347191 cites W745466245 @default.
- W2910347191 cites W94248761 @default.
- W2910347191 doi "https://doi.org/10.1074/jbc.ra118.006452" @default.
- W2910347191 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6422104" @default.
- W2910347191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30630954" @default.
- W2910347191 hasPublicationYear "2019" @default.
- W2910347191 type Work @default.
- W2910347191 sameAs 2910347191 @default.
- W2910347191 citedByCount "9" @default.
- W2910347191 countsByYear W29103471912019 @default.
- W2910347191 countsByYear W29103471912020 @default.
- W2910347191 countsByYear W29103471912021 @default.
- W2910347191 countsByYear W29103471912022 @default.
- W2910347191 countsByYear W29103471912023 @default.
- W2910347191 crossrefType "journal-article" @default.
- W2910347191 hasAuthorship W2910347191A5011811865 @default.
- W2910347191 hasAuthorship W2910347191A5017318009 @default.
- W2910347191 hasAuthorship W2910347191A5063018733 @default.
- W2910347191 hasAuthorship W2910347191A5064798059 @default.
- W2910347191 hasAuthorship W2910347191A5078428252 @default.
- W2910347191 hasBestOaLocation W29103471911 @default.
- W2910347191 hasConcept C121332964 @default.
- W2910347191 hasConcept C127503593 @default.
- W2910347191 hasConcept C148898269 @default.
- W2910347191 hasConcept C178790620 @default.
- W2910347191 hasConcept C181199279 @default.
- W2910347191 hasConcept C185592680 @default.
- W2910347191 hasConcept C2776151105 @default.
- W2910347191 hasConcept C2776217839 @default.