Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910362900> ?p ?o ?g. }
- W2910362900 endingPage "12" @default.
- W2910362900 startingPage "1" @default.
- W2910362900 abstract "Positron emission tomography (PET) provides simple noninvasive imaging biomarkers for multiple human diseases which can be used to produce quantitative information from single static images or to monitor dynamic processes. Such kinetic studies often require the tracer input function (IF) to be measured but, in contrast to direct blood sampling, the image-derived input function (IDIF) provides a noninvasive alternative technique to estimate the IF. Accurate estimation can, in general, be challenging due to the partial volume effect (PVE), which is particularly important in preclinical work on small animals. The recently proposed hybrid kernelised ordered subsets expectation maximisation (HKEM) method has been shown to improve accuracy and contrast across a range of different datasets and count levels and can be used on PET/MR or PET/CT data. In this work, we apply the method with the purpose of providing accurate estimates of the aorta IDIF for rabbit PET studies. In addition, we proposed a method for the extraction of the aorta region of interest (ROI) using the MR and the HKEM image, to minimise the PVE within the rabbit aortic region—a method which can be directly transferred to the clinical setting. A realistic simulation study was performed with ten independent noise realisations while two, real data, rabbit datasets, acquired with the Biograph Siemens mMR PET/MR scanner, were also considered. For reference and comparison, the data were reconstructed using OSEM, OSEM with Gaussian postfilter and KEM, as well as HKEM. The results across the simulated datasets and different time frames show reduced PVE and accurate IDIF values for the proposed method, with 5% average bias (0.8% minimum and 16% maximum bias). Consistent results were obtained with the real datasets. The results of this study demonstrate that HKEM can be used to accurately estimate the IDIF in preclinical PET/MR studies, such as rabbit mMR data, as well as in clinical human studies. The proposed algorithm is made available as part of an open software library, and it can be used equally successfully on human or animal data acquired from a variety of PET/MR or PET/CT scanners." @default.
- W2910362900 created "2019-01-25" @default.
- W2910362900 creator A5007050875 @default.
- W2910362900 creator A5018357052 @default.
- W2910362900 creator A5022380272 @default.
- W2910362900 creator A5036699530 @default.
- W2910362900 creator A5070571941 @default.
- W2910362900 creator A5076064842 @default.
- W2910362900 creator A5088513060 @default.
- W2910362900 creator A5089434484 @default.
- W2910362900 creator A5091392386 @default.
- W2910362900 date "2019-01-16" @default.
- W2910362900 modified "2023-10-18" @default.
- W2910362900 title "Hybrid PET/MR Kernelised Expectation Maximisation Reconstruction for Improved Image-Derived Estimation of the Input Function from the Aorta of Rabbits" @default.
- W2910362900 cites W1640361445 @default.
- W2910362900 cites W1691092222 @default.
- W2910362900 cites W1871263388 @default.
- W2910362900 cites W1971596846 @default.
- W2910362900 cites W2001644575 @default.
- W2910362900 cites W2002477254 @default.
- W2910362900 cites W2014351445 @default.
- W2910362900 cites W2046997857 @default.
- W2910362900 cites W2048389466 @default.
- W2910362900 cites W2053589245 @default.
- W2910362900 cites W2057509834 @default.
- W2910362900 cites W2060314256 @default.
- W2910362900 cites W2065877493 @default.
- W2910362900 cites W2080500950 @default.
- W2910362900 cites W2094847554 @default.
- W2910362900 cites W2122770995 @default.
- W2910362900 cites W2127890285 @default.
- W2910362900 cites W2133736237 @default.
- W2910362900 cites W2147678066 @default.
- W2910362900 cites W2149283592 @default.
- W2910362900 cites W2154744699 @default.
- W2910362900 cites W2168997364 @default.
- W2910362900 cites W2201657017 @default.
- W2910362900 cites W2292599276 @default.
- W2910362900 cites W2403428001 @default.
- W2910362900 cites W2404583896 @default.
- W2910362900 cites W2415730600 @default.
- W2910362900 cites W2432015496 @default.
- W2910362900 cites W2517088289 @default.
- W2910362900 cites W2530952499 @default.
- W2910362900 cites W2762263727 @default.
- W2910362900 cites W2763761518 @default.
- W2910362900 cites W2767848063 @default.
- W2910362900 cites W2770686150 @default.
- W2910362900 cites W2807474247 @default.
- W2910362900 cites W2896549842 @default.
- W2910362900 cites W2903545743 @default.
- W2910362900 cites W3101749733 @default.
- W2910362900 doi "https://doi.org/10.1155/2019/3438093" @default.
- W2910362900 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6360049" @default.
- W2910362900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30800014" @default.
- W2910362900 hasPublicationYear "2019" @default.
- W2910362900 type Work @default.
- W2910362900 sameAs 2910362900 @default.
- W2910362900 citedByCount "11" @default.
- W2910362900 countsByYear W29103629002019 @default.
- W2910362900 countsByYear W29103629002020 @default.
- W2910362900 countsByYear W29103629002021 @default.
- W2910362900 countsByYear W29103629002022 @default.
- W2910362900 countsByYear W29103629002023 @default.
- W2910362900 crossrefType "journal-article" @default.
- W2910362900 hasAuthorship W2910362900A5007050875 @default.
- W2910362900 hasAuthorship W2910362900A5018357052 @default.
- W2910362900 hasAuthorship W2910362900A5022380272 @default.
- W2910362900 hasAuthorship W2910362900A5036699530 @default.
- W2910362900 hasAuthorship W2910362900A5070571941 @default.
- W2910362900 hasAuthorship W2910362900A5076064842 @default.
- W2910362900 hasAuthorship W2910362900A5088513060 @default.
- W2910362900 hasAuthorship W2910362900A5089434484 @default.
- W2910362900 hasAuthorship W2910362900A5091392386 @default.
- W2910362900 hasBestOaLocation W29103629001 @default.
- W2910362900 hasConcept C121332964 @default.
- W2910362900 hasConcept C153180895 @default.
- W2910362900 hasConcept C154945302 @default.
- W2910362900 hasConcept C163716315 @default.
- W2910362900 hasConcept C164705383 @default.
- W2910362900 hasConcept C2775842073 @default.
- W2910362900 hasConcept C2776502983 @default.
- W2910362900 hasConcept C2776845966 @default.
- W2910362900 hasConcept C2779751349 @default.
- W2910362900 hasConcept C2779980429 @default.
- W2910362900 hasConcept C2989005 @default.
- W2910362900 hasConcept C31972630 @default.
- W2910362900 hasConcept C33923547 @default.
- W2910362900 hasConcept C41008148 @default.
- W2910362900 hasConcept C62520636 @default.
- W2910362900 hasConcept C71924100 @default.
- W2910362900 hasConcept C82233179 @default.
- W2910362900 hasConceptScore W2910362900C121332964 @default.
- W2910362900 hasConceptScore W2910362900C153180895 @default.
- W2910362900 hasConceptScore W2910362900C154945302 @default.
- W2910362900 hasConceptScore W2910362900C163716315 @default.
- W2910362900 hasConceptScore W2910362900C164705383 @default.
- W2910362900 hasConceptScore W2910362900C2775842073 @default.