Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910363943> ?p ?o ?g. }
- W2910363943 endingPage "503" @default.
- W2910363943 startingPage "487" @default.
- W2910363943 abstract "Despite the widely recognized importance of the spatio-temporal clustering of earthquakes, there are few robust methods for identifying clusters of causally related earthquakes. Recently, it has been proposed that earthquakes can be linked to their nearest neighbour events using a rescaled distance that depends on space, time and magnitude. These nearest neighbour links may correspond either to causally related event pairs within a clustered sequence or a non-causal relationship between independent events in different sequences. The frequency distribution of these rescaled nearest neighbour distances is consistent with a two-component mixture model where one component models random background events and the other models causally related clusters of events. To distinguish between these populations, a binary threshold has commonly been used to separate the clustered and background events. This has an obvious weakness in that it ignores the overlap of the two distributions and therefore all uncertainty in the event pair classification. It is also restricted so far to treating the two modes as normal distributions. Here we develop a new probabilistic clustering framework using a Markov Chain Monte Carlo mixture modelling approach which allows overlap and enables us to quantify uncertainty in event linkage. We test three hypotheses for the underlying component distributions. The normal and gamma distributions fail to fit the tails of the observed mixture distribution in a well-behaved way. In contrast, the Weibull mixture model is well-behaved in the tail, and provides a better fit to the data. We demonstrate this using catalogues from Southern California, Japan, Italy and New Zealand. We also demonstrate how this new approach can be used to create probabilistic cluster networks allowing investigation of cluster structure and the spatial, temporal and magnitude distributions of different types of clustering and highlight difficulties in applying simple metrics for cluster discrimination." @default.
- W2910363943 created "2019-01-25" @default.
- W2910363943 creator A5040961795 @default.
- W2910363943 creator A5051832739 @default.
- W2910363943 creator A5070752823 @default.
- W2910363943 date "2019-01-18" @default.
- W2910363943 modified "2023-09-25" @default.
- W2910363943 title "Probabilistic identification of earthquake clusters using rescaled nearest neighbour distance networks" @default.
- W2910363943 cites W130037070 @default.
- W2910363943 cites W1480041858 @default.
- W2910363943 cites W1547884832 @default.
- W2910363943 cites W1556245327 @default.
- W2910363943 cites W1653233483 @default.
- W2910363943 cites W1865264234 @default.
- W2910363943 cites W1897943864 @default.
- W2910363943 cites W1989964704 @default.
- W2910363943 cites W1995276147 @default.
- W2910363943 cites W1996307217 @default.
- W2910363943 cites W1999287311 @default.
- W2910363943 cites W2012852466 @default.
- W2910363943 cites W2050369689 @default.
- W2910363943 cites W2058951418 @default.
- W2910363943 cites W2071778976 @default.
- W2910363943 cites W2076072287 @default.
- W2910363943 cites W2085371969 @default.
- W2910363943 cites W2085878288 @default.
- W2910363943 cites W2093039288 @default.
- W2910363943 cites W2101288603 @default.
- W2910363943 cites W2102386709 @default.
- W2910363943 cites W2103651466 @default.
- W2910363943 cites W2105792028 @default.
- W2910363943 cites W2115053326 @default.
- W2910363943 cites W2134012062 @default.
- W2910363943 cites W2135101868 @default.
- W2910363943 cites W2144317258 @default.
- W2910363943 cites W2147846751 @default.
- W2910363943 cites W2156431740 @default.
- W2910363943 cites W2303851450 @default.
- W2910363943 cites W2315553177 @default.
- W2910363943 cites W2340385395 @default.
- W2910363943 cites W2512179842 @default.
- W2910363943 cites W2528827837 @default.
- W2910363943 cites W2546720092 @default.
- W2910363943 cites W2560409346 @default.
- W2910363943 cites W2648282265 @default.
- W2910363943 cites W2755402335 @default.
- W2910363943 cites W2766895038 @default.
- W2910363943 cites W2769893710 @default.
- W2910363943 cites W2791159031 @default.
- W2910363943 cites W2800395348 @default.
- W2910363943 cites W2950705488 @default.
- W2910363943 doi "https://doi.org/10.1093/gji/ggz034" @default.
- W2910363943 hasPublicationYear "2019" @default.
- W2910363943 type Work @default.
- W2910363943 sameAs 2910363943 @default.
- W2910363943 citedByCount "12" @default.
- W2910363943 countsByYear W29103639432020 @default.
- W2910363943 countsByYear W29103639432021 @default.
- W2910363943 countsByYear W29103639432022 @default.
- W2910363943 countsByYear W29103639432023 @default.
- W2910363943 crossrefType "journal-article" @default.
- W2910363943 hasAuthorship W2910363943A5040961795 @default.
- W2910363943 hasAuthorship W2910363943A5051832739 @default.
- W2910363943 hasAuthorship W2910363943A5070752823 @default.
- W2910363943 hasBestOaLocation W29103639432 @default.
- W2910363943 hasConcept C105795698 @default.
- W2910363943 hasConcept C121332964 @default.
- W2910363943 hasConcept C121864883 @default.
- W2910363943 hasConcept C149441793 @default.
- W2910363943 hasConcept C153180895 @default.
- W2910363943 hasConcept C154945302 @default.
- W2910363943 hasConcept C2779662365 @default.
- W2910363943 hasConcept C33923547 @default.
- W2910363943 hasConcept C41008148 @default.
- W2910363943 hasConcept C49937458 @default.
- W2910363943 hasConcept C61224824 @default.
- W2910363943 hasConcept C62520636 @default.
- W2910363943 hasConcept C73555534 @default.
- W2910363943 hasConceptScore W2910363943C105795698 @default.
- W2910363943 hasConceptScore W2910363943C121332964 @default.
- W2910363943 hasConceptScore W2910363943C121864883 @default.
- W2910363943 hasConceptScore W2910363943C149441793 @default.
- W2910363943 hasConceptScore W2910363943C153180895 @default.
- W2910363943 hasConceptScore W2910363943C154945302 @default.
- W2910363943 hasConceptScore W2910363943C2779662365 @default.
- W2910363943 hasConceptScore W2910363943C33923547 @default.
- W2910363943 hasConceptScore W2910363943C41008148 @default.
- W2910363943 hasConceptScore W2910363943C49937458 @default.
- W2910363943 hasConceptScore W2910363943C61224824 @default.
- W2910363943 hasConceptScore W2910363943C62520636 @default.
- W2910363943 hasConceptScore W2910363943C73555534 @default.
- W2910363943 hasFunder F4320334627 @default.
- W2910363943 hasIssue "1" @default.
- W2910363943 hasLocation W29103639431 @default.
- W2910363943 hasLocation W29103639432 @default.
- W2910363943 hasLocation W29103639433 @default.
- W2910363943 hasLocation W29103639434 @default.
- W2910363943 hasOpenAccess W2910363943 @default.