Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910571853> ?p ?o ?g. }
- W2910571853 endingPage "229" @default.
- W2910571853 startingPage "211" @default.
- W2910571853 abstract "Bayesian methods for dynamic models in marketing have so far been parametric. For instance, it is invariably assumed that model errors emerge from normal distributions. Yet using arbitrary distributional assumptions can result in false inference, which in turn misleads managers. The author therefore presents a set of flexible Bayesian nonparametric (NP) dynamic models that treat error densities as unknown but assume that they emerge from Dirichlet process mixtures. Although the methods address misspecification in dynamic linear models, the main innovation is a particle filter algorithm for nonlinear state-space models. The author used two advertising studies to confirm the benefits of the methods when strict error assumptions are untenable. In both studies, NP models markedly outperformed benchmarks in terms of fit and forecast results. In the first study, the benchmarks understated the effects of competitive advertising on own brand awareness. In the second study, the benchmark inflated ad quality, and consequently, the effects of past advertising appeared 36% higher than that predicted by the NP model. In general, these methods should be valuable wherever state-space models appear (e.g., brand and advertising dynamics, diffusion of innovation, dynamic discrete choice)." @default.
- W2910571853 created "2019-01-25" @default.
- W2910571853 creator A5003015424 @default.
- W2910571853 date "2019-01-18" @default.
- W2910571853 modified "2023-09-26" @default.
- W2910571853 title "Bayesian Nonparametric Dynamic Methods: Applications to Linear and Nonlinear Advertising Models" @default.
- W2910571853 cites W1483307070 @default.
- W2910571853 cites W1864720896 @default.
- W2910571853 cites W1967687583 @default.
- W2910571853 cites W1977404151 @default.
- W2910571853 cites W1983929636 @default.
- W2910571853 cites W1990863283 @default.
- W2910571853 cites W2000953197 @default.
- W2910571853 cites W2016542516 @default.
- W2910571853 cites W2017154266 @default.
- W2910571853 cites W2020911841 @default.
- W2910571853 cites W2031124403 @default.
- W2910571853 cites W2033828039 @default.
- W2910571853 cites W2038885294 @default.
- W2910571853 cites W2039628234 @default.
- W2910571853 cites W2052021248 @default.
- W2910571853 cites W2055822187 @default.
- W2910571853 cites W2057765075 @default.
- W2910571853 cites W2062017072 @default.
- W2910571853 cites W2066794405 @default.
- W2910571853 cites W2069429561 @default.
- W2910571853 cites W2075887421 @default.
- W2910571853 cites W2082688295 @default.
- W2910571853 cites W2083399570 @default.
- W2910571853 cites W2084667959 @default.
- W2910571853 cites W2089484716 @default.
- W2910571853 cites W2091797506 @default.
- W2910571853 cites W2099514122 @default.
- W2910571853 cites W2106706098 @default.
- W2910571853 cites W2140797833 @default.
- W2910571853 cites W2153618429 @default.
- W2910571853 cites W2155968480 @default.
- W2910571853 cites W2162175235 @default.
- W2910571853 cites W2172573491 @default.
- W2910571853 cites W2189005075 @default.
- W2910571853 cites W2408075075 @default.
- W2910571853 cites W2592559253 @default.
- W2910571853 cites W2952196728 @default.
- W2910571853 cites W3122267940 @default.
- W2910571853 cites W3123652306 @default.
- W2910571853 cites W3150501812 @default.
- W2910571853 cites W4214503934 @default.
- W2910571853 cites W4237262408 @default.
- W2910571853 cites W4248681815 @default.
- W2910571853 cites W4254267043 @default.
- W2910571853 cites W4301888497 @default.
- W2910571853 cites W4302413401 @default.
- W2910571853 cites W4308951891 @default.
- W2910571853 cites W2127923747 @default.
- W2910571853 doi "https://doi.org/10.1177/0022243718810524" @default.
- W2910571853 hasPublicationYear "2019" @default.
- W2910571853 type Work @default.
- W2910571853 sameAs 2910571853 @default.
- W2910571853 citedByCount "3" @default.
- W2910571853 countsByYear W29105718532020 @default.
- W2910571853 countsByYear W29105718532021 @default.
- W2910571853 countsByYear W29105718532022 @default.
- W2910571853 crossrefType "journal-article" @default.
- W2910571853 hasAuthorship W2910571853A5003015424 @default.
- W2910571853 hasConcept C102366305 @default.
- W2910571853 hasConcept C105795698 @default.
- W2910571853 hasConcept C107673813 @default.
- W2910571853 hasConcept C117251300 @default.
- W2910571853 hasConcept C121332964 @default.
- W2910571853 hasConcept C126255220 @default.
- W2910571853 hasConcept C13280743 @default.
- W2910571853 hasConcept C149782125 @default.
- W2910571853 hasConcept C154945302 @default.
- W2910571853 hasConcept C158622935 @default.
- W2910571853 hasConcept C160234255 @default.
- W2910571853 hasConcept C177264268 @default.
- W2910571853 hasConcept C185798385 @default.
- W2910571853 hasConcept C199360897 @default.
- W2910571853 hasConcept C205649164 @default.
- W2910571853 hasConcept C2776214188 @default.
- W2910571853 hasConcept C2781280628 @default.
- W2910571853 hasConcept C33923547 @default.
- W2910571853 hasConcept C41008148 @default.
- W2910571853 hasConcept C62520636 @default.
- W2910571853 hasConcept C72434380 @default.
- W2910571853 hasConceptScore W2910571853C102366305 @default.
- W2910571853 hasConceptScore W2910571853C105795698 @default.
- W2910571853 hasConceptScore W2910571853C107673813 @default.
- W2910571853 hasConceptScore W2910571853C117251300 @default.
- W2910571853 hasConceptScore W2910571853C121332964 @default.
- W2910571853 hasConceptScore W2910571853C126255220 @default.
- W2910571853 hasConceptScore W2910571853C13280743 @default.
- W2910571853 hasConceptScore W2910571853C149782125 @default.
- W2910571853 hasConceptScore W2910571853C154945302 @default.
- W2910571853 hasConceptScore W2910571853C158622935 @default.
- W2910571853 hasConceptScore W2910571853C160234255 @default.
- W2910571853 hasConceptScore W2910571853C177264268 @default.
- W2910571853 hasConceptScore W2910571853C185798385 @default.