Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910719485> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2910719485 abstract "Electroencephalogram (EEG) signals exhibit highly irregular patterns. This irregularity, which arises from i.i.d. measurement noise, has been partially resolved by memoryless classifiers, such as deep convolutional neural networks (CNN). However, there are other major sources of irregularity, including brain network modes, mental states, and various physiological factors. These internal states drift over time, in which case it would be better to use memory-based neural networks, such as long short-term memory networks (LSTM). This paper presents a novel EEG signal classification framework that resolves a trade-off between memoryless and memory-based classification. The proposed method uses deep reinforcement learning (RL) to find a trial-by-trial control strategy for the attention control system that switches between CNN (memoryless) and LSTM (memory-based)—or is a mixture of both. The simulation on the EEG dataset, which was collected while performing a complex cognitive task, shows that the proposed attention control system outperforms other EEG classification methods." @default.
- W2910719485 created "2019-01-25" @default.
- W2910719485 creator A5046603228 @default.
- W2910719485 creator A5075631319 @default.
- W2910719485 date "2018-10-01" @default.
- W2910719485 modified "2023-09-26" @default.
- W2910719485 title "Solving the Memory-Based Memoryless Trade-off Problem for EEG Signal Classification" @default.
- W2910719485 cites W1541519874 @default.
- W2910719485 cites W1923404803 @default.
- W2910719485 cites W2016053056 @default.
- W2910719485 cites W2039665627 @default.
- W2910719485 cites W2060936825 @default.
- W2910719485 cites W2107789863 @default.
- W2910719485 cites W2121863487 @default.
- W2910719485 cites W2129299900 @default.
- W2910719485 cites W2135890809 @default.
- W2910719485 cites W2145339207 @default.
- W2910719485 cites W2160815625 @default.
- W2910719485 cites W2163605009 @default.
- W2910719485 cites W2165611870 @default.
- W2910719485 cites W2429215548 @default.
- W2910719485 cites W2555399721 @default.
- W2910719485 cites W2750382711 @default.
- W2910719485 cites W2794345050 @default.
- W2910719485 cites W2802787326 @default.
- W2910719485 cites W2962699674 @default.
- W2910719485 cites W89197320 @default.
- W2910719485 doi "https://doi.org/10.1109/smc.2018.00095" @default.
- W2910719485 hasPublicationYear "2018" @default.
- W2910719485 type Work @default.
- W2910719485 sameAs 2910719485 @default.
- W2910719485 citedByCount "0" @default.
- W2910719485 crossrefType "proceedings-article" @default.
- W2910719485 hasAuthorship W2910719485A5046603228 @default.
- W2910719485 hasAuthorship W2910719485A5075631319 @default.
- W2910719485 hasConcept C108583219 @default.
- W2910719485 hasConcept C115961682 @default.
- W2910719485 hasConcept C127413603 @default.
- W2910719485 hasConcept C153180895 @default.
- W2910719485 hasConcept C154945302 @default.
- W2910719485 hasConcept C15744967 @default.
- W2910719485 hasConcept C169760540 @default.
- W2910719485 hasConcept C199360897 @default.
- W2910719485 hasConcept C201995342 @default.
- W2910719485 hasConcept C2779843651 @default.
- W2910719485 hasConcept C2780451532 @default.
- W2910719485 hasConcept C28490314 @default.
- W2910719485 hasConcept C41008148 @default.
- W2910719485 hasConcept C50644808 @default.
- W2910719485 hasConcept C522805319 @default.
- W2910719485 hasConcept C81363708 @default.
- W2910719485 hasConcept C97541855 @default.
- W2910719485 hasConcept C99498987 @default.
- W2910719485 hasConceptScore W2910719485C108583219 @default.
- W2910719485 hasConceptScore W2910719485C115961682 @default.
- W2910719485 hasConceptScore W2910719485C127413603 @default.
- W2910719485 hasConceptScore W2910719485C153180895 @default.
- W2910719485 hasConceptScore W2910719485C154945302 @default.
- W2910719485 hasConceptScore W2910719485C15744967 @default.
- W2910719485 hasConceptScore W2910719485C169760540 @default.
- W2910719485 hasConceptScore W2910719485C199360897 @default.
- W2910719485 hasConceptScore W2910719485C201995342 @default.
- W2910719485 hasConceptScore W2910719485C2779843651 @default.
- W2910719485 hasConceptScore W2910719485C2780451532 @default.
- W2910719485 hasConceptScore W2910719485C28490314 @default.
- W2910719485 hasConceptScore W2910719485C41008148 @default.
- W2910719485 hasConceptScore W2910719485C50644808 @default.
- W2910719485 hasConceptScore W2910719485C522805319 @default.
- W2910719485 hasConceptScore W2910719485C81363708 @default.
- W2910719485 hasConceptScore W2910719485C97541855 @default.
- W2910719485 hasConceptScore W2910719485C99498987 @default.
- W2910719485 hasLocation W29107194851 @default.
- W2910719485 hasOpenAccess W2910719485 @default.
- W2910719485 hasPrimaryLocation W29107194851 @default.
- W2910719485 hasRelatedWork W2175757722 @default.
- W2910719485 hasRelatedWork W2774049169 @default.
- W2910719485 hasRelatedWork W2797669432 @default.
- W2910719485 hasRelatedWork W2897351303 @default.
- W2910719485 hasRelatedWork W2900269840 @default.
- W2910719485 hasRelatedWork W2913246999 @default.
- W2910719485 hasRelatedWork W2949108148 @default.
- W2910719485 hasRelatedWork W2954830149 @default.
- W2910719485 hasRelatedWork W2989842085 @default.
- W2910719485 hasRelatedWork W2990721662 @default.
- W2910719485 hasRelatedWork W2990809856 @default.
- W2910719485 hasRelatedWork W2993348073 @default.
- W2910719485 hasRelatedWork W3004921944 @default.
- W2910719485 hasRelatedWork W3007453328 @default.
- W2910719485 hasRelatedWork W3128566578 @default.
- W2910719485 hasRelatedWork W3152813380 @default.
- W2910719485 hasRelatedWork W3173912422 @default.
- W2910719485 hasRelatedWork W3179461162 @default.
- W2910719485 hasRelatedWork W3196226472 @default.
- W2910719485 hasRelatedWork W3206997847 @default.
- W2910719485 isParatext "false" @default.
- W2910719485 isRetracted "false" @default.
- W2910719485 magId "2910719485" @default.
- W2910719485 workType "article" @default.