Matches in SemOpenAlex for { <https://semopenalex.org/work/W2910742847> ?p ?o ?g. }
- W2910742847 abstract "Multiple RNA interaction can be modeled as a problem in combinatorial optimization, where the optimal structure is driven by an energy-minimization-like algorithm. However, the actual structure may not be optimal in this computational sense. Moreover, it is not necessarily unique. Therefore, alternative sub-optimal solutions are needed to cover the biological ground. We present a combinatorial formulation for the Multiple RNA Interaction problem with approximation algorithms to handle various interaction patterns, which when combined with Gibbs sampling and MCMC (Markov Chain Monte Carlo), can efficiently generate a reasonable number of optimal and sub-optimal solutions. When viable structures are far from an optimal solution, exploring dependence among different parts of the interaction can increase their score and boost their candidacy for the sampling algorithm. By clustering the solutions, we identify few representatives that are distinct enough to suggest possible alternative structures." @default.
- W2910742847 created "2019-01-25" @default.
- W2910742847 creator A5070998275 @default.
- W2910742847 creator A5078748432 @default.
- W2910742847 date "2019-05-01" @default.
- W2910742847 modified "2023-10-18" @default.
- W2910742847 title "Gibbs/MCMC Sampling for Multiple RNA Interaction with Sub-Optimal Solutions" @default.
- W2910742847 cites W1501627602 @default.
- W2910742847 cites W1967586899 @default.
- W2910742847 cites W1967735923 @default.
- W2910742847 cites W1983815263 @default.
- W2910742847 cites W1984675364 @default.
- W2910742847 cites W2003841667 @default.
- W2910742847 cites W2009570821 @default.
- W2910742847 cites W2010260400 @default.
- W2910742847 cites W2014031166 @default.
- W2910742847 cites W2018102932 @default.
- W2910742847 cites W2020993740 @default.
- W2910742847 cites W2020999234 @default.
- W2910742847 cites W2025388270 @default.
- W2910742847 cites W2033765726 @default.
- W2910742847 cites W2042820257 @default.
- W2910742847 cites W2043653977 @default.
- W2910742847 cites W2050882265 @default.
- W2910742847 cites W2053783019 @default.
- W2910742847 cites W2056760934 @default.
- W2910742847 cites W2057742112 @default.
- W2910742847 cites W2083479074 @default.
- W2910742847 cites W2096573498 @default.
- W2910742847 cites W2099306789 @default.
- W2910742847 cites W2112457754 @default.
- W2910742847 cites W2112815967 @default.
- W2910742847 cites W2118490016 @default.
- W2910742847 cites W2118793274 @default.
- W2910742847 cites W2119340328 @default.
- W2910742847 cites W2132081807 @default.
- W2910742847 cites W2138309709 @default.
- W2910742847 cites W2138391810 @default.
- W2910742847 cites W2151863773 @default.
- W2910742847 cites W2153140501 @default.
- W2910742847 cites W2161043701 @default.
- W2910742847 cites W2164700062 @default.
- W2910742847 cites W2165583827 @default.
- W2910742847 cites W2166268906 @default.
- W2910742847 cites W2177331573 @default.
- W2910742847 cites W2182711540 @default.
- W2910742847 cites W2342412940 @default.
- W2910742847 cites W2404315875 @default.
- W2910742847 cites W2501301043 @default.
- W2910742847 cites W2577903052 @default.
- W2910742847 cites W2609607459 @default.
- W2910742847 cites W2745750801 @default.
- W2910742847 cites W2787806091 @default.
- W2910742847 cites W2901034095 @default.
- W2910742847 cites W53859920 @default.
- W2910742847 doi "https://doi.org/10.1109/tcbb.2018.2890519" @default.
- W2910742847 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30629511" @default.
- W2910742847 hasPublicationYear "2019" @default.
- W2910742847 type Work @default.
- W2910742847 sameAs 2910742847 @default.
- W2910742847 citedByCount "1" @default.
- W2910742847 countsByYear W29107428472020 @default.
- W2910742847 crossrefType "journal-article" @default.
- W2910742847 hasAuthorship W2910742847A5070998275 @default.
- W2910742847 hasAuthorship W2910742847A5078748432 @default.
- W2910742847 hasConcept C105795698 @default.
- W2910742847 hasConcept C106131492 @default.
- W2910742847 hasConcept C107673813 @default.
- W2910742847 hasConcept C111350023 @default.
- W2910742847 hasConcept C11413529 @default.
- W2910742847 hasConcept C119857082 @default.
- W2910742847 hasConcept C126255220 @default.
- W2910742847 hasConcept C127413603 @default.
- W2910742847 hasConcept C140779682 @default.
- W2910742847 hasConcept C154945302 @default.
- W2910742847 hasConcept C158424031 @default.
- W2910742847 hasConcept C19499675 @default.
- W2910742847 hasConcept C204693719 @default.
- W2910742847 hasConcept C2780428219 @default.
- W2910742847 hasConcept C31972630 @default.
- W2910742847 hasConcept C33923547 @default.
- W2910742847 hasConcept C41008148 @default.
- W2910742847 hasConcept C73555534 @default.
- W2910742847 hasConcept C78519656 @default.
- W2910742847 hasConcept C98763669 @default.
- W2910742847 hasConceptScore W2910742847C105795698 @default.
- W2910742847 hasConceptScore W2910742847C106131492 @default.
- W2910742847 hasConceptScore W2910742847C107673813 @default.
- W2910742847 hasConceptScore W2910742847C111350023 @default.
- W2910742847 hasConceptScore W2910742847C11413529 @default.
- W2910742847 hasConceptScore W2910742847C119857082 @default.
- W2910742847 hasConceptScore W2910742847C126255220 @default.
- W2910742847 hasConceptScore W2910742847C127413603 @default.
- W2910742847 hasConceptScore W2910742847C140779682 @default.
- W2910742847 hasConceptScore W2910742847C154945302 @default.
- W2910742847 hasConceptScore W2910742847C158424031 @default.
- W2910742847 hasConceptScore W2910742847C19499675 @default.
- W2910742847 hasConceptScore W2910742847C204693719 @default.
- W2910742847 hasConceptScore W2910742847C2780428219 @default.
- W2910742847 hasConceptScore W2910742847C31972630 @default.