Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911322491> ?p ?o ?g. }
- W2911322491 endingPage "104" @default.
- W2911322491 startingPage "104" @default.
- W2911322491 abstract "Forest aboveground biomass (AGB) estimation modeling based on remote sensing is an important method for large-scale biomass estimation; the accuracy of the estimation models has been a topic of broad and current interest. In this study, we used permanent sample plot data and Landsat 8 Operational Land Imager (OLI) images of western Hunan. Remote-sensing-based models were developed for different vegetation types, and different crown density classes were incorporated. The linear model, linear dummy variable model, and linear mixed-effects model were used to determine the most effective and accurate method for remote-sensing-based AGB estimation. The results show that the adjusted coefficient of determination (R2adj) and root mean square error (RMSE) of the linear dummy model and linear mixed-effects model were significantly better than those of the linear model; the R2adj increased more than 0.16 and the RMSE decreased more than 2.12 for each vegetation type, and the F-test also showed significant differences between the linear model and linear dummy variable model and between the linear model and linear mixed-effects model. The accuracies of the AGB estimations of the linear dummy variable model and the linear mixed-effects model were significantly better than those of linear model in the thin and dense crown density classes. There were no significant differences in the AGB estimation performance between the linear dummy variable model and linear mixed-effects model; these two models were more flexible and more suitable than the linear model for remote-sensing-based AGB estimation. The results of this study provide a new approach for solving the low-accuracy estimations of linear models." @default.
- W2911322491 created "2019-02-21" @default.
- W2911322491 creator A5003753200 @default.
- W2911322491 creator A5058405672 @default.
- W2911322491 creator A5077972623 @default.
- W2911322491 date "2019-01-29" @default.
- W2911322491 modified "2023-09-29" @default.
- W2911322491 title "Improving Forest Aboveground Biomass (AGB) Estimation by Incorporating Crown Density and Using Landsat 8 OLI Images of a Subtropical Forest in Western Hunan in Central China" @default.
- W2911322491 cites W1527561456 @default.
- W2911322491 cites W1866632595 @default.
- W2911322491 cites W1948133483 @default.
- W2911322491 cites W1974328142 @default.
- W2911322491 cites W1977761893 @default.
- W2911322491 cites W1981139388 @default.
- W2911322491 cites W1981855554 @default.
- W2911322491 cites W1991933965 @default.
- W2911322491 cites W1994120111 @default.
- W2911322491 cites W1998792435 @default.
- W2911322491 cites W2001551649 @default.
- W2911322491 cites W2008674189 @default.
- W2911322491 cites W2012519352 @default.
- W2911322491 cites W2012656566 @default.
- W2911322491 cites W2018027183 @default.
- W2911322491 cites W2040996383 @default.
- W2911322491 cites W2047744778 @default.
- W2911322491 cites W2048128256 @default.
- W2911322491 cites W2053022485 @default.
- W2911322491 cites W2070939483 @default.
- W2911322491 cites W2076867991 @default.
- W2911322491 cites W2084451370 @default.
- W2911322491 cites W2087674734 @default.
- W2911322491 cites W2094434658 @default.
- W2911322491 cites W2105770001 @default.
- W2911322491 cites W2112144785 @default.
- W2911322491 cites W2113249705 @default.
- W2911322491 cites W2117706739 @default.
- W2911322491 cites W2126099406 @default.
- W2911322491 cites W2141545157 @default.
- W2911322491 cites W2149060533 @default.
- W2911322491 cites W2150853404 @default.
- W2911322491 cites W2155863249 @default.
- W2911322491 cites W2201441719 @default.
- W2911322491 cites W2269348179 @default.
- W2911322491 cites W2395793980 @default.
- W2911322491 cites W2416310637 @default.
- W2911322491 cites W2508131240 @default.
- W2911322491 cites W2528468441 @default.
- W2911322491 cites W2564060852 @default.
- W2911322491 cites W2647822624 @default.
- W2911322491 cites W2738076904 @default.
- W2911322491 cites W2740857609 @default.
- W2911322491 cites W292510950 @default.
- W2911322491 doi "https://doi.org/10.3390/f10020104" @default.
- W2911322491 hasPublicationYear "2019" @default.
- W2911322491 type Work @default.
- W2911322491 sameAs 2911322491 @default.
- W2911322491 citedByCount "36" @default.
- W2911322491 countsByYear W29113224912019 @default.
- W2911322491 countsByYear W29113224912020 @default.
- W2911322491 countsByYear W29113224912021 @default.
- W2911322491 countsByYear W29113224912022 @default.
- W2911322491 countsByYear W29113224912023 @default.
- W2911322491 crossrefType "journal-article" @default.
- W2911322491 hasAuthorship W2911322491A5003753200 @default.
- W2911322491 hasAuthorship W2911322491A5058405672 @default.
- W2911322491 hasAuthorship W2911322491A5077972623 @default.
- W2911322491 hasBestOaLocation W29113224911 @default.
- W2911322491 hasConcept C105795698 @default.
- W2911322491 hasConcept C115540264 @default.
- W2911322491 hasConcept C128990827 @default.
- W2911322491 hasConcept C139945424 @default.
- W2911322491 hasConcept C142724271 @default.
- W2911322491 hasConcept C163175372 @default.
- W2911322491 hasConcept C18903297 @default.
- W2911322491 hasConcept C199343813 @default.
- W2911322491 hasConcept C205649164 @default.
- W2911322491 hasConcept C2776133958 @default.
- W2911322491 hasConcept C2778400979 @default.
- W2911322491 hasConcept C33923547 @default.
- W2911322491 hasConcept C39432304 @default.
- W2911322491 hasConcept C41587187 @default.
- W2911322491 hasConcept C48921125 @default.
- W2911322491 hasConcept C62649853 @default.
- W2911322491 hasConcept C71924100 @default.
- W2911322491 hasConcept C86803240 @default.
- W2911322491 hasConceptScore W2911322491C105795698 @default.
- W2911322491 hasConceptScore W2911322491C115540264 @default.
- W2911322491 hasConceptScore W2911322491C128990827 @default.
- W2911322491 hasConceptScore W2911322491C139945424 @default.
- W2911322491 hasConceptScore W2911322491C142724271 @default.
- W2911322491 hasConceptScore W2911322491C163175372 @default.
- W2911322491 hasConceptScore W2911322491C18903297 @default.
- W2911322491 hasConceptScore W2911322491C199343813 @default.
- W2911322491 hasConceptScore W2911322491C205649164 @default.
- W2911322491 hasConceptScore W2911322491C2776133958 @default.
- W2911322491 hasConceptScore W2911322491C2778400979 @default.
- W2911322491 hasConceptScore W2911322491C33923547 @default.
- W2911322491 hasConceptScore W2911322491C39432304 @default.