Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911430976> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2911430976 endingPage "1184" @default.
- W2911430976 startingPage "1180" @default.
- W2911430976 abstract "This letter proposes the implementation of ionospheric forecasting model based on the long short-term memory (LSTM) networks. Ionospheric region produces time delay for radio wave propagation of global positioning system (GPS) satellites. The ionospheric delays for GPS signals degrade the position accuracy in the measurements for precise navigation and positioning services. Utilizing the emerging artificial intelligence mathematical tools to forecast ionospheric disturbances using GPS-estimated total electron content (TEC) observations is decisive. In this letter, multi-input LSTM forecasting technique is investigated and tested for evaluating its capability in forecasting the ionospheric delays over Bengaluru station (16.26° N, 80.44° E) using eight years (2009–2016) of GPS measured vertical TEC (VTEC) time-series data. The assessment of the LSTM model performance during geomagnetic quiet and disturbed conditions is carried out in comparison with artificial neural networks model and International Reference Ionosphere (IRI-2016) model based on statistical parameters like root-mean-square error and coefficient of determination ( $R^{2}$ ). The experimental analysis delineates that the proposed LSTM model has provided the correlation of 0.99 with the GPS-measured VTEC and with a forecasting error of 1–2 TEC units." @default.
- W2911430976 created "2019-02-21" @default.
- W2911430976 creator A5006912906 @default.
- W2911430976 creator A5078547540 @default.
- W2911430976 creator A5082753291 @default.
- W2911430976 date "2019-08-01" @default.
- W2911430976 modified "2023-10-14" @default.
- W2911430976 title "A Deep Learning-Based Approach to Forecast Ionospheric Delays for GPS Signals" @default.
- W2911430976 cites W11812926 @default.
- W2911430976 cites W1491857816 @default.
- W2911430976 cites W1989570322 @default.
- W2911430976 cites W2005814963 @default.
- W2911430976 cites W2009950372 @default.
- W2911430976 cites W2010137522 @default.
- W2911430976 cites W2032008442 @default.
- W2911430976 cites W2058695628 @default.
- W2911430976 cites W2075859239 @default.
- W2911430976 cites W2082382517 @default.
- W2911430976 cites W2091782546 @default.
- W2911430976 cites W2146077510 @default.
- W2911430976 cites W2322442010 @default.
- W2911430976 cites W2343468622 @default.
- W2911430976 cites W2604086375 @default.
- W2911430976 cites W2619995677 @default.
- W2911430976 cites W2734481970 @default.
- W2911430976 cites W2766932813 @default.
- W2911430976 cites W2769781104 @default.
- W2911430976 cites W2889588396 @default.
- W2911430976 cites W2890934433 @default.
- W2911430976 doi "https://doi.org/10.1109/lgrs.2019.2895112" @default.
- W2911430976 hasPublicationYear "2019" @default.
- W2911430976 type Work @default.
- W2911430976 sameAs 2911430976 @default.
- W2911430976 citedByCount "58" @default.
- W2911430976 countsByYear W29114309762019 @default.
- W2911430976 countsByYear W29114309762020 @default.
- W2911430976 countsByYear W29114309762021 @default.
- W2911430976 countsByYear W29114309762022 @default.
- W2911430976 countsByYear W29114309762023 @default.
- W2911430976 crossrefType "journal-article" @default.
- W2911430976 hasAuthorship W2911430976A5006912906 @default.
- W2911430976 hasAuthorship W2911430976A5078547540 @default.
- W2911430976 hasAuthorship W2911430976A5082753291 @default.
- W2911430976 hasConcept C116403925 @default.
- W2911430976 hasConcept C127313418 @default.
- W2911430976 hasConcept C127413603 @default.
- W2911430976 hasConcept C146978453 @default.
- W2911430976 hasConcept C19269812 @default.
- W2911430976 hasConcept C2986254709 @default.
- W2911430976 hasConcept C41008148 @default.
- W2911430976 hasConcept C60229501 @default.
- W2911430976 hasConcept C62649853 @default.
- W2911430976 hasConcept C76155785 @default.
- W2911430976 hasConcept C8058405 @default.
- W2911430976 hasConceptScore W2911430976C116403925 @default.
- W2911430976 hasConceptScore W2911430976C127313418 @default.
- W2911430976 hasConceptScore W2911430976C127413603 @default.
- W2911430976 hasConceptScore W2911430976C146978453 @default.
- W2911430976 hasConceptScore W2911430976C19269812 @default.
- W2911430976 hasConceptScore W2911430976C2986254709 @default.
- W2911430976 hasConceptScore W2911430976C41008148 @default.
- W2911430976 hasConceptScore W2911430976C60229501 @default.
- W2911430976 hasConceptScore W2911430976C62649853 @default.
- W2911430976 hasConceptScore W2911430976C76155785 @default.
- W2911430976 hasConceptScore W2911430976C8058405 @default.
- W2911430976 hasIssue "8" @default.
- W2911430976 hasLocation W29114309761 @default.
- W2911430976 hasOpenAccess W2911430976 @default.
- W2911430976 hasPrimaryLocation W29114309761 @default.
- W2911430976 hasRelatedWork W1972840238 @default.
- W2911430976 hasRelatedWork W2188909963 @default.
- W2911430976 hasRelatedWork W23763574 @default.
- W2911430976 hasRelatedWork W2390360604 @default.
- W2911430976 hasRelatedWork W2393195889 @default.
- W2911430976 hasRelatedWork W3142531079 @default.
- W2911430976 hasRelatedWork W3148316956 @default.
- W2911430976 hasRelatedWork W95929932 @default.
- W2911430976 hasRelatedWork W1576390976 @default.
- W2911430976 hasRelatedWork W2288357425 @default.
- W2911430976 hasVolume "16" @default.
- W2911430976 isParatext "false" @default.
- W2911430976 isRetracted "false" @default.
- W2911430976 magId "2911430976" @default.
- W2911430976 workType "article" @default.