Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911441333> ?p ?o ?g. }
- W2911441333 endingPage "511" @default.
- W2911441333 startingPage "501" @default.
- W2911441333 abstract "Rivers are perhaps the most altered ecosystem due to the human disturbances of water contamination, habitat destruction, hydrological regime change, overexploitation and exotic species introduction. Knowledge about the integrated effects of both natural environmental gradients and anthropogenic disturbances on multiple aquatic organism at a watershed scale is limited. In this study, the physical, chemical, hydrological and biological data were collected in May 2009 and 2010 at 281 sampling sites spread out wide stress gradients in the Hun-Tai River. We conducted canonical correspondence analysis (CCA) and network analysis to reveal the aquatic assemblage structures of fish, macroinvertebrates and benthic algae under the steep gradients of nutrient concentration and multiple environmental parameters. The results showed that habitat quality, elevation, water depth, stream width, dissolved oxygen, conductivity, TN, TP, and N:P ratio were identified as the significant parameters on the community compositions of fish, macroinvertebrate and benthic algae. In contrast to the historical effects of organic pollution, the eutrophication became the currently dominant human influencing factor on aquatic organisms in the Hun-Tai River. The nutrient parameters of nitrogen and phosphorus, and stoichiometric of N:P (mainly influenced by TP) were all identified as the significant parameters in the CCA biplots of fish, macroinvertebrate and benthic algae. Fish community was closely related with stream hydromorphological and nutrients parameters, however, macroinvertebrate and periphyton communities were driven by morphometry, chemistry and nutrients parameters. Network analysis was used to reveal the taxa associations and their correlations with nutrient parameters. By calculating the topological parameters of the networks, both the benthic algae and macroinvertebrate assemblages showed higher values of network centralization, heterogeneity, and average numbers of neighbors than fish in the network, those which usually indicated the higher association among taxa and stability of community structures. Huigobio chinssuensis, Cobitis granoei, and Ctenogobius brunneus were the core fish taxa, the subfamily Tanypodiinae, Epeorus and Ephemerella were the core macroinvertebrate taxa, and genera of Diatom, Fragilaria, Achnanthes, Navicula, Cymbella, and Nitzschia were the core benthic algae taxa in the network. A few taxa of fish showed significantly negative correlations with enrichment of nutrients and increasing the N:P ratio, and significantly positive correlations only existed with N:P ratio. In contrast to the fish network, macroinvertebrate and benthic algae taxa showed stronger and broader negative correlations to that of enrichment and N:P ratios in the network. Meanwhile, the positive correlations also broadly existed in the benthic algae network. This finding offers new clues of specific taxa of macroinvertebrate and benthic algae could be used as the indicator of stream eutrophication. This study provided new insights into integrated application of ordination method and network analysis in structuring the assemblage composition. And the network analysis also improve our understanding of individual interactions in the community and their relations to environmental stressors at the species level." @default.
- W2911441333 created "2019-02-21" @default.
- W2911441333 creator A5012350575 @default.
- W2911441333 creator A5012727269 @default.
- W2911441333 creator A5023363049 @default.
- W2911441333 creator A5046803466 @default.
- W2911441333 creator A5049160431 @default.
- W2911441333 creator A5064147684 @default.
- W2911441333 creator A5069340142 @default.
- W2911441333 date "2019-06-01" @default.
- W2911441333 modified "2023-10-17" @default.
- W2911441333 title "Networks and ordination analyses reveal the stream community structures of fish, macroinvertebrate and benthic algae, and their responses to nutrient enrichment" @default.
- W2911441333 cites W1820919316 @default.
- W2911441333 cites W1922366044 @default.
- W2911441333 cites W1964479940 @default.
- W2911441333 cites W1965859522 @default.
- W2911441333 cites W1966623514 @default.
- W2911441333 cites W1967625757 @default.
- W2911441333 cites W1968126426 @default.
- W2911441333 cites W1969076090 @default.
- W2911441333 cites W1970386685 @default.
- W2911441333 cites W1971483205 @default.
- W2911441333 cites W1976222527 @default.
- W2911441333 cites W1978268513 @default.
- W2911441333 cites W1984639178 @default.
- W2911441333 cites W1994897173 @default.
- W2911441333 cites W1997156144 @default.
- W2911441333 cites W1998265162 @default.
- W2911441333 cites W2002555360 @default.
- W2911441333 cites W2002982986 @default.
- W2911441333 cites W2005992077 @default.
- W2911441333 cites W2007515772 @default.
- W2911441333 cites W2008290634 @default.
- W2911441333 cites W2016181454 @default.
- W2911441333 cites W2022602783 @default.
- W2911441333 cites W2024471867 @default.
- W2911441333 cites W2024696842 @default.
- W2911441333 cites W2028796274 @default.
- W2911441333 cites W2028915685 @default.
- W2911441333 cites W2036147765 @default.
- W2911441333 cites W2044030413 @default.
- W2911441333 cites W2047337493 @default.
- W2911441333 cites W2047756642 @default.
- W2911441333 cites W2047795189 @default.
- W2911441333 cites W2049912271 @default.
- W2911441333 cites W2055587582 @default.
- W2911441333 cites W2066383045 @default.
- W2911441333 cites W2066579884 @default.
- W2911441333 cites W2068101361 @default.
- W2911441333 cites W2070342981 @default.
- W2911441333 cites W2070805814 @default.
- W2911441333 cites W2074838159 @default.
- W2911441333 cites W2077249903 @default.
- W2911441333 cites W2081563461 @default.
- W2911441333 cites W2082469231 @default.
- W2911441333 cites W2086594581 @default.
- W2911441333 cites W2094671960 @default.
- W2911441333 cites W2100681049 @default.
- W2911441333 cites W2100782051 @default.
- W2911441333 cites W2114442532 @default.
- W2911441333 cites W2116544104 @default.
- W2911441333 cites W2118684065 @default.
- W2911441333 cites W2119306421 @default.
- W2911441333 cites W2120505014 @default.
- W2911441333 cites W2126444705 @default.
- W2911441333 cites W2132453181 @default.
- W2911441333 cites W2134567823 @default.
- W2911441333 cites W2135003112 @default.
- W2911441333 cites W2138436021 @default.
- W2911441333 cites W2144656637 @default.
- W2911441333 cites W2147382470 @default.
- W2911441333 cites W2152654970 @default.
- W2911441333 cites W2156760914 @default.
- W2911441333 cites W2159221056 @default.
- W2911441333 cites W2161706971 @default.
- W2911441333 cites W2164087962 @default.
- W2911441333 cites W2164521686 @default.
- W2911441333 cites W2165572549 @default.
- W2911441333 cites W2168547089 @default.
- W2911441333 cites W2178607821 @default.
- W2911441333 cites W2181023428 @default.
- W2911441333 cites W2210924833 @default.
- W2911441333 cites W2297697717 @default.
- W2911441333 cites W2330272637 @default.
- W2911441333 cites W2346373240 @default.
- W2911441333 cites W249699725 @default.
- W2911441333 cites W2550537883 @default.
- W2911441333 cites W2623845233 @default.
- W2911441333 cites W2624093053 @default.
- W2911441333 cites W2767931329 @default.
- W2911441333 cites W2792330247 @default.
- W2911441333 cites W2904386657 @default.
- W2911441333 cites W4231736634 @default.
- W2911441333 doi "https://doi.org/10.1016/j.ecolind.2019.01.030" @default.
- W2911441333 hasPublicationYear "2019" @default.
- W2911441333 type Work @default.
- W2911441333 sameAs 2911441333 @default.
- W2911441333 citedByCount "23" @default.