Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911554154> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2911554154 endingPage "273" @default.
- W2911554154 startingPage "257" @default.
- W2911554154 abstract "Abstract We compared the performance of Sentinel-2 and Landsat 8 data for forest variable prediction in the boreal forest of Southern Finland. We defined twelve modelling setups to train multivariable prediction models with either multilayer perceptron (MLP) or regression tree models with the brute force forward selection method. The reference data consisted of 739 circular field plots that had been collected by the Finnish Forest Centre concurrently with the Sentinel-2 and Landsat 8 acquisitions. The input data were divided into training, validation and test sets of equal sizes for 100 iterations in each modelling setup. The predicted forest variables were stem volume (V), stem diameter (D), tree height (H) and basal area (G), and their species-wise components for pine (Pine), spruce (Spr) and broadleaved (BL) trees. We recorded the performance figures and the best predictive image bands for each modelling setup. The best average performance over the 100 modelling iterations was obtained using all Sentinel-2 bands. The plot-level relative root mean square errors (RMSE%) of the field observed mean were 38.4% for average stem diameter, 42.5% for stem basal area/ha, 30.4% for average tree height, and 59.3% for growing stock volume/ha with variables including all tree species. The corresponding best figures with all Landsat 8 bands were RMSE% = 44.6%, 50.2%, 36.6% and 72.2%, respectively. The Sentinel-2 outperformed Landsat 8 also when using near-equivalent image bands and Sentinel-2 data down-sampled to 30 m pixel resolution. The relative systematic error (bias%) did not show any significant differences between Sentinel-2 and Landsat 8 data: the average of the absolute value of bias% was 0.8% for Sentinel-2 and 1.2% for Landsat 8. The best predictive Sentinel-2 image band was the red-edge 1 (B05_RE1), when variable totals including all species were estimated. The short-wave infrared bands (B11_SWIR1 & B12_SWIR2) and the visible green band (B03_Green) were also among the best predictors. The median number of predictors in the best performing models was 4–6 for the Sentinel-2 and 4–5 for the Landsat 8 models, respectively. We conclude that Sentinel-2 Multispectral Instrument (MSI) data can be recommended as the principal Earth observation data source in forest resources assessment." @default.
- W2911554154 created "2019-02-21" @default.
- W2911554154 creator A5019908413 @default.
- W2911554154 creator A5023700134 @default.
- W2911554154 creator A5046720807 @default.
- W2911554154 creator A5074849885 @default.
- W2911554154 creator A5076783733 @default.
- W2911554154 date "2019-03-01" @default.
- W2911554154 modified "2023-10-03" @default.
- W2911554154 title "Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region" @default.
- W2911554154 cites W1974329551 @default.
- W2911554154 cites W1985467342 @default.
- W2911554154 cites W2007393964 @default.
- W2911554154 cites W2017337590 @default.
- W2911554154 cites W2038921172 @default.
- W2911554154 cites W2040884411 @default.
- W2911554154 cites W2048950501 @default.
- W2911554154 cites W2053349525 @default.
- W2911554154 cites W2055718260 @default.
- W2911554154 cites W2056435747 @default.
- W2911554154 cites W2080441468 @default.
- W2911554154 cites W2093919938 @default.
- W2911554154 cites W2100348820 @default.
- W2911554154 cites W2101354384 @default.
- W2911554154 cites W2101748122 @default.
- W2911554154 cites W2102515349 @default.
- W2911554154 cites W2112608799 @default.
- W2911554154 cites W2113865576 @default.
- W2911554154 cites W2124426131 @default.
- W2911554154 cites W2136922672 @default.
- W2911554154 cites W2157675604 @default.
- W2911554154 cites W2175899267 @default.
- W2911554154 cites W2273708466 @default.
- W2911554154 cites W2416310637 @default.
- W2911554154 cites W2515583119 @default.
- W2911554154 cites W2534081299 @default.
- W2911554154 cites W2559772994 @default.
- W2911554154 cites W2562763039 @default.
- W2911554154 cites W2589181229 @default.
- W2911554154 cites W2589611909 @default.
- W2911554154 cites W2611080000 @default.
- W2911554154 doi "https://doi.org/10.1016/j.rse.2019.01.019" @default.
- W2911554154 hasPublicationYear "2019" @default.
- W2911554154 type Work @default.
- W2911554154 sameAs 2911554154 @default.
- W2911554154 citedByCount "124" @default.
- W2911554154 countsByYear W29115541542019 @default.
- W2911554154 countsByYear W29115541542020 @default.
- W2911554154 countsByYear W29115541542021 @default.
- W2911554154 countsByYear W29115541542022 @default.
- W2911554154 countsByYear W29115541542023 @default.
- W2911554154 crossrefType "journal-article" @default.
- W2911554154 hasAuthorship W2911554154A5019908413 @default.
- W2911554154 hasAuthorship W2911554154A5023700134 @default.
- W2911554154 hasAuthorship W2911554154A5046720807 @default.
- W2911554154 hasAuthorship W2911554154A5074849885 @default.
- W2911554154 hasAuthorship W2911554154A5076783733 @default.
- W2911554154 hasBestOaLocation W29115541541 @default.
- W2911554154 hasConcept C100537666 @default.
- W2911554154 hasConcept C100970517 @default.
- W2911554154 hasConcept C127313418 @default.
- W2911554154 hasConcept C151730666 @default.
- W2911554154 hasConcept C205649164 @default.
- W2911554154 hasConcept C2778102629 @default.
- W2911554154 hasConcept C39432304 @default.
- W2911554154 hasConcept C62649853 @default.
- W2911554154 hasConcept C87621631 @default.
- W2911554154 hasConcept C97137747 @default.
- W2911554154 hasConceptScore W2911554154C100537666 @default.
- W2911554154 hasConceptScore W2911554154C100970517 @default.
- W2911554154 hasConceptScore W2911554154C127313418 @default.
- W2911554154 hasConceptScore W2911554154C151730666 @default.
- W2911554154 hasConceptScore W2911554154C205649164 @default.
- W2911554154 hasConceptScore W2911554154C2778102629 @default.
- W2911554154 hasConceptScore W2911554154C39432304 @default.
- W2911554154 hasConceptScore W2911554154C62649853 @default.
- W2911554154 hasConceptScore W2911554154C87621631 @default.
- W2911554154 hasConceptScore W2911554154C97137747 @default.
- W2911554154 hasFunder F4320324024 @default.
- W2911554154 hasLocation W29115541541 @default.
- W2911554154 hasOpenAccess W2911554154 @default.
- W2911554154 hasPrimaryLocation W29115541541 @default.
- W2911554154 hasRelatedWork W171638705 @default.
- W2911554154 hasRelatedWork W1966406940 @default.
- W2911554154 hasRelatedWork W1991770826 @default.
- W2911554154 hasRelatedWork W2103254080 @default.
- W2911554154 hasRelatedWork W2110551686 @default.
- W2911554154 hasRelatedWork W2133109741 @default.
- W2911554154 hasRelatedWork W2887535326 @default.
- W2911554154 hasRelatedWork W2911554154 @default.
- W2911554154 hasRelatedWork W3046757468 @default.
- W2911554154 hasRelatedWork W4206413202 @default.
- W2911554154 hasVolume "223" @default.
- W2911554154 isParatext "false" @default.
- W2911554154 isRetracted "false" @default.
- W2911554154 magId "2911554154" @default.
- W2911554154 workType "article" @default.