Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911724726> ?p ?o ?g. }
- W2911724726 endingPage "284" @default.
- W2911724726 startingPage "284" @default.
- W2911724726 abstract "Soil moisture mapping at a regional scale is commonplace since these data are required in many applications, such as hydrological and agricultural analyses. The use of remotely sensed data for the estimation of deep soil moisture at a regional scale has received far less emphasis. The objective of this study was to map the 500-m, 8-day average and daily soil moisture at different soil depths in Oklahoma from remotely sensed and ground-measured data using the random forest (RF) method, which is one of the machine-learning approaches. In order to investigate the estimation accuracy of the RF method at both a spatial and a temporal scale, two independent soil moisture estimation experiments were conducted using data from 2010 to 2014: a year-to-year experiment (with a root mean square error (RMSE) ranging from 0.038 to 0.050 m3/m3) and a station-to-station experiment (with an RMSE ranging from 0.044 to 0.057 m3/m3). Then, the data requirements, importance factors, and spatial and temporal variations in estimation accuracy were discussed based on the results using the training data selected by iterated random sampling. The highly accurate estimations of both the surface and the deep soil moisture for the study area reveal the potential of RF methods when mapping soil moisture at a regional scale, especially when considering the high heterogeneity of land-cover types and topography in the study area." @default.
- W2911724726 created "2019-02-21" @default.
- W2911724726 creator A5002109517 @default.
- W2911724726 creator A5011971882 @default.
- W2911724726 creator A5018551811 @default.
- W2911724726 creator A5041016380 @default.
- W2911724726 creator A5056627479 @default.
- W2911724726 creator A5070369693 @default.
- W2911724726 creator A5081833712 @default.
- W2911724726 date "2019-02-01" @default.
- W2911724726 modified "2023-09-26" @default.
- W2911724726 title "Multilayer Soil Moisture Mapping at a Regional Scale from Multisource Data via a Machine Learning Method" @default.
- W2911724726 cites W1558018944 @default.
- W2911724726 cites W1643664725 @default.
- W2911724726 cites W1898704524 @default.
- W2911724726 cites W1964785899 @default.
- W2911724726 cites W1971716077 @default.
- W2911724726 cites W1977937583 @default.
- W2911724726 cites W1990653740 @default.
- W2911724726 cites W1991307278 @default.
- W2911724726 cites W1996322510 @default.
- W2911724726 cites W1999411300 @default.
- W2911724726 cites W1999684577 @default.
- W2911724726 cites W2005638607 @default.
- W2911724726 cites W2009563371 @default.
- W2911724726 cites W2012090224 @default.
- W2911724726 cites W2012354455 @default.
- W2911724726 cites W2014166534 @default.
- W2911724726 cites W2015066808 @default.
- W2911724726 cites W2018627383 @default.
- W2911724726 cites W2021652078 @default.
- W2911724726 cites W2024380184 @default.
- W2911724726 cites W2027554150 @default.
- W2911724726 cites W2030437435 @default.
- W2911724726 cites W2034956981 @default.
- W2911724726 cites W2039348932 @default.
- W2911724726 cites W2043253630 @default.
- W2911724726 cites W2044321444 @default.
- W2911724726 cites W2044826415 @default.
- W2911724726 cites W2045093289 @default.
- W2911724726 cites W2048336910 @default.
- W2911724726 cites W2054109005 @default.
- W2911724726 cites W2055470561 @default.
- W2911724726 cites W2066609360 @default.
- W2911724726 cites W2068371905 @default.
- W2911724726 cites W2068806005 @default.
- W2911724726 cites W2069414124 @default.
- W2911724726 cites W2070213129 @default.
- W2911724726 cites W2070817134 @default.
- W2911724726 cites W2072903702 @default.
- W2911724726 cites W2081477212 @default.
- W2911724726 cites W2082484980 @default.
- W2911724726 cites W2092728468 @default.
- W2911724726 cites W2097498299 @default.
- W2911724726 cites W2100401723 @default.
- W2911724726 cites W2101664201 @default.
- W2911724726 cites W2109307475 @default.
- W2911724726 cites W2116428100 @default.
- W2911724726 cites W2122324724 @default.
- W2911724726 cites W2127035833 @default.
- W2911724726 cites W2130098273 @default.
- W2911724726 cites W2135816625 @default.
- W2911724726 cites W2139718878 @default.
- W2911724726 cites W2141219203 @default.
- W2911724726 cites W2143715729 @default.
- W2911724726 cites W2148557261 @default.
- W2911724726 cites W2151949673 @default.
- W2911724726 cites W2154272608 @default.
- W2911724726 cites W2164460492 @default.
- W2911724726 cites W2168186402 @default.
- W2911724726 cites W2168622160 @default.
- W2911724726 cites W2217893739 @default.
- W2911724726 cites W2289960905 @default.
- W2911724726 cites W2317582304 @default.
- W2911724726 cites W2582566895 @default.
- W2911724726 cites W2599868771 @default.
- W2911724726 cites W2607852324 @default.
- W2911724726 cites W2608636502 @default.
- W2911724726 cites W2738159481 @default.
- W2911724726 cites W2740185334 @default.
- W2911724726 cites W2740614026 @default.
- W2911724726 cites W2743180032 @default.
- W2911724726 cites W2744996510 @default.
- W2911724726 cites W2766301242 @default.
- W2911724726 cites W2792192198 @default.
- W2911724726 cites W2898791292 @default.
- W2911724726 cites W2906866237 @default.
- W2911724726 cites W2911964244 @default.
- W2911724726 doi "https://doi.org/10.3390/rs11030284" @default.
- W2911724726 hasPublicationYear "2019" @default.
- W2911724726 type Work @default.
- W2911724726 sameAs 2911724726 @default.
- W2911724726 citedByCount "19" @default.
- W2911724726 countsByYear W29117247262019 @default.
- W2911724726 countsByYear W29117247262020 @default.
- W2911724726 countsByYear W29117247262021 @default.
- W2911724726 countsByYear W29117247262022 @default.
- W2911724726 countsByYear W29117247262023 @default.