Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911751497> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2911751497 abstract "We explore the applicability of local polynomial approximation of signals for noise suppression. In the context of data regression, Savitzky and Golay showed that least-squares approximation of data with a polynomial of fixed order, together with a constant window length, is identical to convolution with a finite impulse response filter, whose characteristics depend entirely on two parameters, namely, the order and window length. Schafer’s recent article in IEEE Signal Processing Magazine provides a detailed account of one-dimensional Savitzky-Golay (SG) filters. Drawing motivation from this idea, we present an elaborate study of two-dimensional SG filters and employ them for image denoising by optimizing the filter response to minimize the mean-squared error (MSE) between the original image and the filtered output. The key contribution of this thesis is a method for optimal selection of order and window length of SG filters for denoising images. First, we apply the denoising technique for images contaminated by additive Gaussian noise. Owing to the absence of ground truth in practice, direct minimization of the MSE is infeasible. However, the classical work of C. Stein provides a statistical method to overcome the hurdle. Based on Stein’s lemma, an estimate of the MSE, namely Stein’s unbiased risk estimator (SURE), is derived, and the two critical parameters of the filter are optimized to minimize the cost. The performance of the technique improves when a regularization term, which penalizes fast variations in the estimate, is added to the optimization cost. In the next three chapters, we focus on non-Gaussian noise models. In Chapter 3, image degradation in the presence of a compound noise model, where images are corrupted by mixed Poisson-Gaussian noise, is addressed. Inspired by Hudson’s identity, an estimate of MSE, namely Poisson unbiased risk estimator (PURE), which is analogous to SURE, is developed. Combining both lemmas, Poisson-Gaussian unbiased risk estimator (PGURE) minimization is performed to obtain the optimal filter parameters. We also show that SG filtering provides better lowpass approximation for a multiresolution denoising framework.In Chapter 4, we employ SG filters for reducing multiplicative noise in images. The standard SG filter frequency response can be controlled along horizontal or vertical directions. This limits its ability to capture oriented features and texture that lie at other angles. Here, we introduce the idea of steering the SG filter kernel and perform mean-squared error minimization based on the new concept of multiplicative noise unbiased risk estimation (MURE).Finally, we propose a method to robustify SG filters, robustness to deviation from Gaussian noise statistics. SG filters work on the principle of least-squares error minimization, and are hence compatible with maximum-likelihood (ML) estimation in the context of Gaussian statistics. However, for heavily-tailed noise such as the Laplacian, where ML estimation requires mean-absolute error minimization in lieu of MSE…" @default.
- W2911751497 created "2019-02-21" @default.
- W2911751497 creator A5048984800 @default.
- W2911751497 date "2018-07-18" @default.
- W2911751497 modified "2023-09-26" @default.
- W2911751497 title "Savitzky-Golay Filters and Application to Image and Signal Denoising" @default.
- W2911751497 hasPublicationYear "2018" @default.
- W2911751497 type Work @default.
- W2911751497 sameAs 2911751497 @default.
- W2911751497 citedByCount "0" @default.
- W2911751497 crossrefType "dissertation" @default.
- W2911751497 hasAuthorship W2911751497A5048984800 @default.
- W2911751497 hasConcept C105795698 @default.
- W2911751497 hasConcept C106131492 @default.
- W2911751497 hasConcept C11413529 @default.
- W2911751497 hasConcept C126255220 @default.
- W2911751497 hasConcept C134306372 @default.
- W2911751497 hasConcept C139945424 @default.
- W2911751497 hasConcept C151730666 @default.
- W2911751497 hasConcept C154945302 @default.
- W2911751497 hasConcept C163294075 @default.
- W2911751497 hasConcept C165293857 @default.
- W2911751497 hasConcept C198386975 @default.
- W2911751497 hasConcept C2779343474 @default.
- W2911751497 hasConcept C31972630 @default.
- W2911751497 hasConcept C33923547 @default.
- W2911751497 hasConcept C41008148 @default.
- W2911751497 hasConcept C86803240 @default.
- W2911751497 hasConcept C90119067 @default.
- W2911751497 hasConceptScore W2911751497C105795698 @default.
- W2911751497 hasConceptScore W2911751497C106131492 @default.
- W2911751497 hasConceptScore W2911751497C11413529 @default.
- W2911751497 hasConceptScore W2911751497C126255220 @default.
- W2911751497 hasConceptScore W2911751497C134306372 @default.
- W2911751497 hasConceptScore W2911751497C139945424 @default.
- W2911751497 hasConceptScore W2911751497C151730666 @default.
- W2911751497 hasConceptScore W2911751497C154945302 @default.
- W2911751497 hasConceptScore W2911751497C163294075 @default.
- W2911751497 hasConceptScore W2911751497C165293857 @default.
- W2911751497 hasConceptScore W2911751497C198386975 @default.
- W2911751497 hasConceptScore W2911751497C2779343474 @default.
- W2911751497 hasConceptScore W2911751497C31972630 @default.
- W2911751497 hasConceptScore W2911751497C33923547 @default.
- W2911751497 hasConceptScore W2911751497C41008148 @default.
- W2911751497 hasConceptScore W2911751497C86803240 @default.
- W2911751497 hasConceptScore W2911751497C90119067 @default.
- W2911751497 hasLocation W29117514971 @default.
- W2911751497 hasOpenAccess W2911751497 @default.
- W2911751497 hasPrimaryLocation W29117514971 @default.
- W2911751497 hasRelatedWork W1530904751 @default.
- W2911751497 hasRelatedWork W1546848803 @default.
- W2911751497 hasRelatedWork W1560673434 @default.
- W2911751497 hasRelatedWork W1675199867 @default.
- W2911751497 hasRelatedWork W1852230655 @default.
- W2911751497 hasRelatedWork W1910362323 @default.
- W2911751497 hasRelatedWork W1968702042 @default.
- W2911751497 hasRelatedWork W1970040843 @default.
- W2911751497 hasRelatedWork W2041967730 @default.
- W2911751497 hasRelatedWork W2076890060 @default.
- W2911751497 hasRelatedWork W2077749167 @default.
- W2911751497 hasRelatedWork W2081595454 @default.
- W2911751497 hasRelatedWork W2139627682 @default.
- W2911751497 hasRelatedWork W2160289905 @default.
- W2911751497 hasRelatedWork W2163262991 @default.
- W2911751497 hasRelatedWork W2372732514 @default.
- W2911751497 hasRelatedWork W2421886322 @default.
- W2911751497 hasRelatedWork W2536189800 @default.
- W2911751497 hasRelatedWork W3000210455 @default.
- W2911751497 hasRelatedWork W2110555555 @default.
- W2911751497 isParatext "false" @default.
- W2911751497 isRetracted "false" @default.
- W2911751497 magId "2911751497" @default.
- W2911751497 workType "dissertation" @default.