Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911762912> ?p ?o ?g. }
- W2911762912 endingPage "292" @default.
- W2911762912 startingPage "292" @default.
- W2911762912 abstract "Modernization of agricultural land use across Europe is responsible for a substantial decline of linear vegetation elements such as tree lines, hedgerows, riparian vegetation, and green lanes. These linear objects have an important function for biodiversity, e.g., as ecological corridors and local habitats for many animal and plant species. Knowledge on their spatial distribution is therefore essential to support conservation strategies and regional planning in rural landscapes but detailed inventories of such linear objects are often lacking. Here, we propose a method to detect linear vegetation elements in agricultural landscapes using classification and segmentation of high-resolution Light Detection and Ranging (LiDAR) point data. To quantify the 3D structure of vegetation, we applied point cloud analysis to identify point-based and neighborhood-based features. As a preprocessing step, we removed planar surfaces such as grassland, bare soil, and water bodies from the point cloud using a feature that describes to what extent the points are scattered in the local neighborhood. We then applied a random forest classifier to separate the remaining points into vegetation and other. Subsequently, a rectangularity-based region growing algorithm allowed to segment the vegetation points into 2D rectangular objects, which were then classified into linear objects based on their elongatedness. We evaluated the accuracy of the linear objects against a manually delineated validation set. The results showed high user’s (0.80), producer’s (0.85), and total accuracies (0.90). These findings are a promising step towards testing our method in other regions and for upscaling it to broad spatial extents. This would allow producing detailed inventories of linear vegetation elements at regional and continental scales in support of biodiversity conservation and regional planning in agricultural and other rural landscapes." @default.
- W2911762912 created "2019-02-21" @default.
- W2911762912 creator A5016563134 @default.
- W2911762912 creator A5034317077 @default.
- W2911762912 creator A5034978311 @default.
- W2911762912 creator A5047780458 @default.
- W2911762912 creator A5081561844 @default.
- W2911762912 date "2019-02-01" @default.
- W2911762912 modified "2023-09-26" @default.
- W2911762912 title "Identification of Linear Vegetation Elements in a Rural Landscape Using LiDAR Point Clouds" @default.
- W2911762912 cites W1588282782 @default.
- W2911762912 cites W1973644502 @default.
- W2911762912 cites W1974938840 @default.
- W2911762912 cites W1975292924 @default.
- W2911762912 cites W1977271893 @default.
- W2911762912 cites W1986522259 @default.
- W2911762912 cites W1996705598 @default.
- W2911762912 cites W1999847838 @default.
- W2911762912 cites W2008680434 @default.
- W2911762912 cites W2011287807 @default.
- W2911762912 cites W2015452969 @default.
- W2911762912 cites W2030850803 @default.
- W2911762912 cites W2038184042 @default.
- W2911762912 cites W2042976030 @default.
- W2911762912 cites W2043997125 @default.
- W2911762912 cites W2044451987 @default.
- W2911762912 cites W2063548203 @default.
- W2911762912 cites W2064630646 @default.
- W2911762912 cites W2082514286 @default.
- W2911762912 cites W2098919237 @default.
- W2911762912 cites W2109553965 @default.
- W2911762912 cites W2113242816 @default.
- W2911762912 cites W2113551198 @default.
- W2911762912 cites W2116019572 @default.
- W2911762912 cites W2118978333 @default.
- W2911762912 cites W2123576693 @default.
- W2911762912 cites W2131256165 @default.
- W2911762912 cites W2146292423 @default.
- W2911762912 cites W2151631165 @default.
- W2911762912 cites W2155653793 @default.
- W2911762912 cites W2159480898 @default.
- W2911762912 cites W2162761385 @default.
- W2911762912 cites W2164330572 @default.
- W2911762912 cites W2172105019 @default.
- W2911762912 cites W2336075680 @default.
- W2911762912 cites W2511525447 @default.
- W2911762912 cites W2520827770 @default.
- W2911762912 cites W2734636959 @default.
- W2911762912 cites W2735492467 @default.
- W2911762912 cites W2911551465 @default.
- W2911762912 cites W2911964244 @default.
- W2911762912 cites W2998115525 @default.
- W2911762912 doi "https://doi.org/10.3390/rs11030292" @default.
- W2911762912 hasPublicationYear "2019" @default.
- W2911762912 type Work @default.
- W2911762912 sameAs 2911762912 @default.
- W2911762912 citedByCount "19" @default.
- W2911762912 countsByYear W29117629122019 @default.
- W2911762912 countsByYear W29117629122020 @default.
- W2911762912 countsByYear W29117629122021 @default.
- W2911762912 countsByYear W29117629122022 @default.
- W2911762912 countsByYear W29117629122023 @default.
- W2911762912 crossrefType "journal-article" @default.
- W2911762912 hasAuthorship W2911762912A5016563134 @default.
- W2911762912 hasAuthorship W2911762912A5034317077 @default.
- W2911762912 hasAuthorship W2911762912A5034978311 @default.
- W2911762912 hasAuthorship W2911762912A5047780458 @default.
- W2911762912 hasAuthorship W2911762912A5081561844 @default.
- W2911762912 hasBestOaLocation W29117629121 @default.
- W2911762912 hasConcept C131979681 @default.
- W2911762912 hasConcept C142724271 @default.
- W2911762912 hasConcept C154945302 @default.
- W2911762912 hasConcept C161840515 @default.
- W2911762912 hasConcept C169258074 @default.
- W2911762912 hasConcept C205649164 @default.
- W2911762912 hasConcept C2776133958 @default.
- W2911762912 hasConcept C39432304 @default.
- W2911762912 hasConcept C41008148 @default.
- W2911762912 hasConcept C51399673 @default.
- W2911762912 hasConcept C58640448 @default.
- W2911762912 hasConcept C62649853 @default.
- W2911762912 hasConcept C71924100 @default.
- W2911762912 hasConceptScore W2911762912C131979681 @default.
- W2911762912 hasConceptScore W2911762912C142724271 @default.
- W2911762912 hasConceptScore W2911762912C154945302 @default.
- W2911762912 hasConceptScore W2911762912C161840515 @default.
- W2911762912 hasConceptScore W2911762912C169258074 @default.
- W2911762912 hasConceptScore W2911762912C205649164 @default.
- W2911762912 hasConceptScore W2911762912C2776133958 @default.
- W2911762912 hasConceptScore W2911762912C39432304 @default.
- W2911762912 hasConceptScore W2911762912C41008148 @default.
- W2911762912 hasConceptScore W2911762912C51399673 @default.
- W2911762912 hasConceptScore W2911762912C58640448 @default.
- W2911762912 hasConceptScore W2911762912C62649853 @default.
- W2911762912 hasConceptScore W2911762912C71924100 @default.
- W2911762912 hasFunder F4320314239 @default.
- W2911762912 hasIssue "3" @default.
- W2911762912 hasLocation W29117629121 @default.