Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911798429> ?p ?o ?g. }
- W2911798429 abstract "Medical Image Analysis is currently experiencing a paradigm shift due to Deep Learning. This technology has recently attracted so much interest of the Medical Imaging community that it led to a specialized conference in `Medical Imaging with Deep Learning' in the year 2018. This article surveys the recent developments in this direction, and provides a critical review of the related major aspects. We organize the reviewed literature according to the underlying Pattern Recognition tasks, and further sub-categorize it following a taxonomy based on human anatomy. This article does not assume prior knowledge of Deep Learning and makes a significant contribution in explaining the core Deep Learning concepts to the non-experts in the Medical community. Unique to this study is the Computer Vision/Machine Learning perspective taken on the advances of Deep Learning in Medical Imaging. This enables us to single out `lack of appropriately annotated large-scale datasets' as the core challenge (among other challenges) in this research direction. We draw on the insights from the sister research fields of Computer Vision, Pattern Recognition and Machine Learning etc.; where the techniques of dealing with such challenges have already matured, to provide promising directions for the Medical Imaging community to fully harness Deep Learning in the future." @default.
- W2911798429 created "2019-02-21" @default.
- W2911798429 creator A5007043330 @default.
- W2911798429 creator A5034645046 @default.
- W2911798429 creator A5034900636 @default.
- W2911798429 creator A5069697936 @default.
- W2911798429 date "2019-02-15" @default.
- W2911798429 modified "2023-09-27" @default.
- W2911798429 title "Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions" @default.
- W2911798429 cites W1498436455 @default.
- W2911798429 cites W1522301498 @default.
- W2911798429 cites W1522734439 @default.
- W2911798429 cites W1548328233 @default.
- W2911798429 cites W1604176317 @default.
- W2911798429 cites W1677409904 @default.
- W2911798429 cites W1686810756 @default.
- W2911798429 cites W177004468 @default.
- W2911798429 cites W1825675169 @default.
- W2911798429 cites W1884191083 @default.
- W2911798429 cites W1901129140 @default.
- W2911798429 cites W1903029394 @default.
- W2911798429 cites W1963882359 @default.
- W2911798429 cites W1969496006 @default.
- W2911798429 cites W1970928383 @default.
- W2911798429 cites W1975020933 @default.
- W2911798429 cites W1975815454 @default.
- W2911798429 cites W1978592082 @default.
- W2911798429 cites W1980287119 @default.
- W2911798429 cites W1982890488 @default.
- W2911798429 cites W1983981789 @default.
- W2911798429 cites W1986649315 @default.
- W2911798429 cites W1988452762 @default.
- W2911798429 cites W1991952617 @default.
- W2911798429 cites W1992974274 @default.
- W2911798429 cites W1999798000 @default.
- W2911798429 cites W2005876975 @default.
- W2911798429 cites W2007153649 @default.
- W2911798429 cites W2008353316 @default.
- W2911798429 cites W2018593404 @default.
- W2911798429 cites W2024924062 @default.
- W2911798429 cites W2031213082 @default.
- W2911798429 cites W2031524196 @default.
- W2911798429 cites W2033723371 @default.
- W2911798429 cites W2042460868 @default.
- W2911798429 cites W2050383414 @default.
- W2911798429 cites W2064675550 @default.
- W2911798429 cites W2075559423 @default.
- W2911798429 cites W2084177652 @default.
- W2911798429 cites W2084220915 @default.
- W2911798429 cites W2085261163 @default.
- W2911798429 cites W2088338354 @default.
- W2911798429 cites W2097117768 @default.
- W2911798429 cites W2099471712 @default.
- W2911798429 cites W2099707769 @default.
- W2911798429 cites W2102099319 @default.
- W2911798429 cites W2107726111 @default.
- W2911798429 cites W2108598243 @default.
- W2911798429 cites W2112467442 @default.
- W2911798429 cites W2112518510 @default.
- W2911798429 cites W2112525988 @default.
- W2911798429 cites W2112796928 @default.
- W2911798429 cites W2118961645 @default.
- W2911798429 cites W2121289914 @default.
- W2911798429 cites W2122328291 @default.
- W2911798429 cites W2124260444 @default.
- W2911798429 cites W2130942839 @default.
- W2911798429 cites W2136504847 @default.
- W2911798429 cites W2136573752 @default.
- W2911798429 cites W2145094598 @default.
- W2911798429 cites W2145305441 @default.
- W2911798429 cites W2149430368 @default.
- W2911798429 cites W2150534249 @default.
- W2911798429 cites W2150769593 @default.
- W2911798429 cites W2151251813 @default.
- W2911798429 cites W2151817208 @default.
- W2911798429 cites W2155298532 @default.
- W2911798429 cites W2155893237 @default.
- W2911798429 cites W2158167845 @default.
- W2911798429 cites W2161113826 @default.
- W2911798429 cites W2161236525 @default.
- W2911798429 cites W2163605009 @default.
- W2911798429 cites W2170167891 @default.
- W2911798429 cites W2172174689 @default.
- W2911798429 cites W2183341477 @default.
- W2911798429 cites W2194775991 @default.
- W2911798429 cites W2218318129 @default.
- W2911798429 cites W2248620004 @default.
- W2911798429 cites W2253429366 @default.
- W2911798429 cites W2266059378 @default.
- W2911798429 cites W2274287116 @default.
- W2911798429 cites W2284198383 @default.
- W2911798429 cites W2288892845 @default.
- W2911798429 cites W2301358467 @default.
- W2911798429 cites W2302255633 @default.
- W2911798429 cites W2310992461 @default.
- W2911798429 cites W2312404985 @default.
- W2911798429 cites W2322371438 @default.
- W2911798429 cites W2323929895 @default.
- W2911798429 cites W2327793514 @default.
- W2911798429 cites W2338271170 @default.