Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911804964> ?p ?o ?g. }
- W2911804964 endingPage "480" @default.
- W2911804964 startingPage "466" @default.
- W2911804964 abstract "Thermal energy storage can be utilized as an effective component in energy systems to maximize cost savings when time-of-use (TOU) pricing or real-time pricing (RTP) is in place. This study proposes a novel approach that can effectively predict performance and determine control strategy of thermal energy storage (i.e., ice storage) in a district cooling system. The proposed approach utilizes Neural Network (NN) based model predictive control (MPC) strategy coupled with a genetic algorithm (GA) optimizer and examines the effectiveness of using a NN model for a district cooling system with ice storage. The NN offers a relatively fast performance estimation of a district cooling system with given external inputs. To simulate the proposed MPC controller, a physics-based model of the district cooling system is first developed and validated to act as a virtual plant for the controller to communicate system states in real times. Next, the NN modeling the plant is developed and trained during a cooling period so that the control strategy is tested under the RTP and TOU pricing. This model is optimized using the GA due to the on/off controls for the district cooling network. Finally, a thermal load prediction algorithm is integrated to test under perfect weather inputs and weather forecasts by considering 1-hour discretization in the MPC scheme. Results indicate that for the month of August, the optimal control scheme can effectively adapt to varying loads and varying prices to effectively reduce operating costs of the district cooling network by approximately 16% and 13% under the TOU pricing and the RTP, respectively." @default.
- W2911804964 created "2019-02-21" @default.
- W2911804964 creator A5034133787 @default.
- W2911804964 creator A5070736725 @default.
- W2911804964 creator A5079442967 @default.
- W2911804964 creator A5087034550 @default.
- W2911804964 date "2019-03-01" @default.
- W2911804964 modified "2023-10-14" @default.
- W2911804964 title "Real time optimal control of district cooling system with thermal energy storage using neural networks" @default.
- W2911804964 cites W1169076056 @default.
- W2911804964 cites W1582555728 @default.
- W2911804964 cites W1588319298 @default.
- W2911804964 cites W1971278352 @default.
- W2911804964 cites W1973706763 @default.
- W2911804964 cites W1973944436 @default.
- W2911804964 cites W1979607444 @default.
- W2911804964 cites W1980242603 @default.
- W2911804964 cites W1984506926 @default.
- W2911804964 cites W1987505752 @default.
- W2911804964 cites W1997413301 @default.
- W2911804964 cites W2000093387 @default.
- W2911804964 cites W2004805052 @default.
- W2911804964 cites W2018386036 @default.
- W2911804964 cites W2023257272 @default.
- W2911804964 cites W2026647281 @default.
- W2911804964 cites W2031048936 @default.
- W2911804964 cites W2032765559 @default.
- W2911804964 cites W2036234964 @default.
- W2911804964 cites W2044889656 @default.
- W2911804964 cites W2048047354 @default.
- W2911804964 cites W2048178471 @default.
- W2911804964 cites W2051607409 @default.
- W2911804964 cites W2051820105 @default.
- W2911804964 cites W2053536890 @default.
- W2911804964 cites W2053690261 @default.
- W2911804964 cites W2064977675 @default.
- W2911804964 cites W2072498052 @default.
- W2911804964 cites W2079784202 @default.
- W2911804964 cites W2080048739 @default.
- W2911804964 cites W2084834223 @default.
- W2911804964 cites W2092326480 @default.
- W2911804964 cites W2093447280 @default.
- W2911804964 cites W2154085835 @default.
- W2911804964 cites W2168138569 @default.
- W2911804964 cites W2194392818 @default.
- W2911804964 cites W2201241783 @default.
- W2911804964 cites W2347173215 @default.
- W2911804964 cites W2563539737 @default.
- W2911804964 cites W2566966773 @default.
- W2911804964 cites W2589508248 @default.
- W2911804964 cites W2596176590 @default.
- W2911804964 doi "https://doi.org/10.1016/j.apenergy.2019.01.093" @default.
- W2911804964 hasPublicationYear "2019" @default.
- W2911804964 type Work @default.
- W2911804964 sameAs 2911804964 @default.
- W2911804964 citedByCount "77" @default.
- W2911804964 countsByYear W29118049642019 @default.
- W2911804964 countsByYear W29118049642020 @default.
- W2911804964 countsByYear W29118049642021 @default.
- W2911804964 countsByYear W29118049642022 @default.
- W2911804964 countsByYear W29118049642023 @default.
- W2911804964 crossrefType "journal-article" @default.
- W2911804964 hasAuthorship W2911804964A5034133787 @default.
- W2911804964 hasAuthorship W2911804964A5070736725 @default.
- W2911804964 hasAuthorship W2911804964A5079442967 @default.
- W2911804964 hasAuthorship W2911804964A5087034550 @default.
- W2911804964 hasConcept C103742991 @default.
- W2911804964 hasConcept C111919701 @default.
- W2911804964 hasConcept C119857082 @default.
- W2911804964 hasConcept C127413603 @default.
- W2911804964 hasConcept C134306372 @default.
- W2911804964 hasConcept C154945302 @default.
- W2911804964 hasConcept C172205157 @default.
- W2911804964 hasConcept C183287310 @default.
- W2911804964 hasConcept C18903297 @default.
- W2911804964 hasConcept C194739806 @default.
- W2911804964 hasConcept C203479927 @default.
- W2911804964 hasConcept C2775924081 @default.
- W2911804964 hasConcept C2781099182 @default.
- W2911804964 hasConcept C33923547 @default.
- W2911804964 hasConcept C41008148 @default.
- W2911804964 hasConcept C44154836 @default.
- W2911804964 hasConcept C47446073 @default.
- W2911804964 hasConcept C50644808 @default.
- W2911804964 hasConcept C6557445 @default.
- W2911804964 hasConcept C73000952 @default.
- W2911804964 hasConcept C7694927 @default.
- W2911804964 hasConcept C78519656 @default.
- W2911804964 hasConcept C86803240 @default.
- W2911804964 hasConcept C8880873 @default.
- W2911804964 hasConceptScore W2911804964C103742991 @default.
- W2911804964 hasConceptScore W2911804964C111919701 @default.
- W2911804964 hasConceptScore W2911804964C119857082 @default.
- W2911804964 hasConceptScore W2911804964C127413603 @default.
- W2911804964 hasConceptScore W2911804964C134306372 @default.
- W2911804964 hasConceptScore W2911804964C154945302 @default.
- W2911804964 hasConceptScore W2911804964C172205157 @default.
- W2911804964 hasConceptScore W2911804964C183287310 @default.