Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911860010> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2911860010 abstract "Electrical resistivity tomography (ERT) is a geophysical technique for modelling the properties of the shallow subsurface. The technique provides a powerful tool for a volumetric representation of the spatial properties and spatio-temporal systems below the ground by indirectly measuring electrical properties. ERT has wide-reaching applications for imaging and monitoring in fields such as mineral exploration, infrastructure, and groundwater modelling. Developing tools that can perform predictions and analysis on the resistivity models with limited intervention will allow for ERT systems to be deployed remotely so that they might serve as an alert system, for example, in areas at risk of landslides, or groundwater contamination. However, the nature of indirect observation in ERT imaging means that there is a high degree of uncertainty in the resolved models, resulting from systematic artefacts that occur in inversion processes and from the fact that the underlying structures and processes cannot be directly observed.This thesis presents a number of developments in automating the analysis and prediction of directly and indirectly observed uncertain systems, both static and dynamic. Drawing from principles in both fuzzy logic and probability, particularly Bayesian statistics, the different representations of uncertainty are exploited and utilised to make meaningful estimates of properties and parameters in noisy systems. The key contributions of the research presented include the unique combination of fuzzy inference systems in a recursive Bayesian estimator to resolve systems under the influence of multiple uncertain dynamic processes. Furthermore, frameworks for robustly isolating features with quantified certainty and for automatically tracking tracer moments in hydrodynamic systems are proposed and applied to a number of real-world case studies." @default.
- W2911860010 created "2019-02-21" @default.
- W2911860010 creator A5029951436 @default.
- W2911860010 date "2018-12-11" @default.
- W2911860010 modified "2023-09-27" @default.
- W2911860010 title "Development of machine learning techniques for characterising changes in time-lapse resistivity monitoring" @default.
- W2911860010 hasPublicationYear "2018" @default.
- W2911860010 type Work @default.
- W2911860010 sameAs 2911860010 @default.
- W2911860010 citedByCount "0" @default.
- W2911860010 crossrefType "dissertation" @default.
- W2911860010 hasAuthorship W2911860010A5029951436 @default.
- W2911860010 hasConcept C107673813 @default.
- W2911860010 hasConcept C119599485 @default.
- W2911860010 hasConcept C119857082 @default.
- W2911860010 hasConcept C124101348 @default.
- W2911860010 hasConcept C127413603 @default.
- W2911860010 hasConcept C154945302 @default.
- W2911860010 hasConcept C160234255 @default.
- W2911860010 hasConcept C32230216 @default.
- W2911860010 hasConcept C41008148 @default.
- W2911860010 hasConcept C60591178 @default.
- W2911860010 hasConcept C69990965 @default.
- W2911860010 hasConceptScore W2911860010C107673813 @default.
- W2911860010 hasConceptScore W2911860010C119599485 @default.
- W2911860010 hasConceptScore W2911860010C119857082 @default.
- W2911860010 hasConceptScore W2911860010C124101348 @default.
- W2911860010 hasConceptScore W2911860010C127413603 @default.
- W2911860010 hasConceptScore W2911860010C154945302 @default.
- W2911860010 hasConceptScore W2911860010C160234255 @default.
- W2911860010 hasConceptScore W2911860010C32230216 @default.
- W2911860010 hasConceptScore W2911860010C41008148 @default.
- W2911860010 hasConceptScore W2911860010C60591178 @default.
- W2911860010 hasConceptScore W2911860010C69990965 @default.
- W2911860010 hasLocation W29118600101 @default.
- W2911860010 hasOpenAccess W2911860010 @default.
- W2911860010 hasPrimaryLocation W29118600101 @default.
- W2911860010 hasRelatedWork W1541133920 @default.
- W2911860010 hasRelatedWork W1544879706 @default.
- W2911860010 hasRelatedWork W1546177792 @default.
- W2911860010 hasRelatedWork W1603217825 @default.
- W2911860010 hasRelatedWork W2270846566 @default.
- W2911860010 hasRelatedWork W2417557894 @default.
- W2911860010 hasRelatedWork W2570953236 @default.
- W2911860010 hasRelatedWork W2744799844 @default.
- W2911860010 hasRelatedWork W2764275399 @default.
- W2911860010 hasRelatedWork W2765658728 @default.
- W2911860010 hasRelatedWork W2765947984 @default.
- W2911860010 hasRelatedWork W2768774425 @default.
- W2911860010 hasRelatedWork W2949709316 @default.
- W2911860010 hasRelatedWork W2975615325 @default.
- W2911860010 hasRelatedWork W3012983322 @default.
- W2911860010 hasRelatedWork W305153116 @default.
- W2911860010 hasRelatedWork W3100157715 @default.
- W2911860010 hasRelatedWork W3119986002 @default.
- W2911860010 hasRelatedWork W3195348523 @default.
- W2911860010 hasRelatedWork W3214320971 @default.
- W2911860010 isParatext "false" @default.
- W2911860010 isRetracted "false" @default.
- W2911860010 magId "2911860010" @default.
- W2911860010 workType "dissertation" @default.