Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911914326> ?p ?o ?g. }
- W2911914326 endingPage "236" @default.
- W2911914326 startingPage "217" @default.
- W2911914326 abstract "Bootstrapping is a simulation-based method to provide statistical inference, or to measure accuracy, on estimators of interest, such as random field parameters, i.e., mean and variance of a physical quantity at each location within a random field, and auto-correlation coefficient of the quantities among any two different locations of the field. Statistical inference may be performed using analytical methods together with multiple sets of complete measurement data. However, measurement data may be incomplete sometimes, due to, for examples, sensor failure, storage capacity in collecting measurement data, or cost/difficulty in increasing measurement density. In such a case, it is challenging to perform statistical inference of auto-correlation coefficients, particularly between locations where no data are measured directly. This study aims to develop an innovative and robust bootstrap method to perform statistical inference on auto-correlation coefficient in one dimensional random fields, e.g., time series or variations of a quantity along a spatial direction such as depth, from multiple sets of incomplete and sparse measurements. The proposed approach is based on a Bayesian compressive sampling (BCS)-Karhunen–Loève (KL) expansion random field generator, which has been used to generate random field samples from sparse measurement data. The proposed bootstrap method is illustrated and validated through both numerical examples and real measurement data. The results obtained from the proposed bootstrap method using multiples sets of incomplete measurement data are consistent with those obtained from analytical methods using multiple sets of complete measurement data." @default.
- W2911914326 created "2019-02-21" @default.
- W2911914326 creator A5031751714 @default.
- W2911914326 creator A5071268993 @default.
- W2911914326 creator A5079594267 @default.
- W2911914326 date "2019-06-01" @default.
- W2911914326 modified "2023-10-18" @default.
- W2911914326 title "Statistical inference of random field auto-correlation structure from multiple sets of incomplete and sparse measurements using Bayesian compressive sampling-based bootstrapping" @default.
- W2911914326 cites W1829415568 @default.
- W2911914326 cites W1970620492 @default.
- W2911914326 cites W1973090811 @default.
- W2911914326 cites W1975477866 @default.
- W2911914326 cites W1977648299 @default.
- W2911914326 cites W2003217687 @default.
- W2911914326 cites W2005228369 @default.
- W2911914326 cites W2007093655 @default.
- W2911914326 cites W2010100928 @default.
- W2911914326 cites W2042974126 @default.
- W2911914326 cites W2046658845 @default.
- W2911914326 cites W2047694274 @default.
- W2911914326 cites W2055996859 @default.
- W2911914326 cites W2061086430 @default.
- W2911914326 cites W2065959887 @default.
- W2911914326 cites W2071284784 @default.
- W2911914326 cites W2076396344 @default.
- W2911914326 cites W2079730421 @default.
- W2911914326 cites W2091773759 @default.
- W2911914326 cites W2117897510 @default.
- W2911914326 cites W2119667497 @default.
- W2911914326 cites W2127606044 @default.
- W2911914326 cites W2136284614 @default.
- W2911914326 cites W2161409394 @default.
- W2911914326 cites W2162547718 @default.
- W2911914326 cites W2164452299 @default.
- W2911914326 cites W2202590120 @default.
- W2911914326 cites W2318137424 @default.
- W2911914326 cites W2410098808 @default.
- W2911914326 cites W2524230762 @default.
- W2911914326 cites W2563965658 @default.
- W2911914326 cites W2564554783 @default.
- W2911914326 cites W2759781822 @default.
- W2911914326 cites W2765166320 @default.
- W2911914326 cites W2766398999 @default.
- W2911914326 cites W2771386828 @default.
- W2911914326 cites W2789353941 @default.
- W2911914326 cites W2800105827 @default.
- W2911914326 cites W2810676336 @default.
- W2911914326 cites W2893736293 @default.
- W2911914326 cites W2901536682 @default.
- W2911914326 cites W2902141467 @default.
- W2911914326 cites W4231857496 @default.
- W2911914326 cites W4250955649 @default.
- W2911914326 doi "https://doi.org/10.1016/j.ymssp.2019.01.049" @default.
- W2911914326 hasPublicationYear "2019" @default.
- W2911914326 type Work @default.
- W2911914326 sameAs 2911914326 @default.
- W2911914326 citedByCount "12" @default.
- W2911914326 countsByYear W29119143262020 @default.
- W2911914326 countsByYear W29119143262021 @default.
- W2911914326 countsByYear W29119143262022 @default.
- W2911914326 countsByYear W29119143262023 @default.
- W2911914326 crossrefType "journal-article" @default.
- W2911914326 hasAuthorship W2911914326A5031751714 @default.
- W2911914326 hasAuthorship W2911914326A5071268993 @default.
- W2911914326 hasAuthorship W2911914326A5079594267 @default.
- W2911914326 hasConcept C105795698 @default.
- W2911914326 hasConcept C106131492 @default.
- W2911914326 hasConcept C107673813 @default.
- W2911914326 hasConcept C11413529 @default.
- W2911914326 hasConcept C124101348 @default.
- W2911914326 hasConcept C124851039 @default.
- W2911914326 hasConcept C130402806 @default.
- W2911914326 hasConcept C134261354 @default.
- W2911914326 hasConcept C140779682 @default.
- W2911914326 hasConcept C149782125 @default.
- W2911914326 hasConcept C154945302 @default.
- W2911914326 hasConcept C160234255 @default.
- W2911914326 hasConcept C185429906 @default.
- W2911914326 hasConcept C202444582 @default.
- W2911914326 hasConcept C207609745 @default.
- W2911914326 hasConcept C2776214188 @default.
- W2911914326 hasConcept C31972630 @default.
- W2911914326 hasConcept C33923547 @default.
- W2911914326 hasConcept C41008148 @default.
- W2911914326 hasConcept C9652623 @default.
- W2911914326 hasConceptScore W2911914326C105795698 @default.
- W2911914326 hasConceptScore W2911914326C106131492 @default.
- W2911914326 hasConceptScore W2911914326C107673813 @default.
- W2911914326 hasConceptScore W2911914326C11413529 @default.
- W2911914326 hasConceptScore W2911914326C124101348 @default.
- W2911914326 hasConceptScore W2911914326C124851039 @default.
- W2911914326 hasConceptScore W2911914326C130402806 @default.
- W2911914326 hasConceptScore W2911914326C134261354 @default.
- W2911914326 hasConceptScore W2911914326C140779682 @default.
- W2911914326 hasConceptScore W2911914326C149782125 @default.
- W2911914326 hasConceptScore W2911914326C154945302 @default.
- W2911914326 hasConceptScore W2911914326C160234255 @default.
- W2911914326 hasConceptScore W2911914326C185429906 @default.