Matches in SemOpenAlex for { <https://semopenalex.org/work/W2911935588> ?p ?o ?g. }
- W2911935588 endingPage "527" @default.
- W2911935588 startingPage "527" @default.
- W2911935588 abstract "Automated fault diagnosis (AFD) for various energy consumption components is one of the main topics for energy efficiency solutions. However, the lack of faulty samples in the training process remains as a difficulty for data-driven AFD of heating, ventilation and air conditioning (HVAC) subsystems, such as air handling units (AHU). Existing works show that semi-supervised learning theories can effectively alleviate the issue by iteratively inserting newly tested faulty data samples into the training pool when the same fault happens again. However, a research gap exists between theoretical AFD algorithms and real-world applications. First, for real-world AFD applications, it is hard to predict the time when the same fault happens again. Second, the training set is required to be pre-defined and fixed before being packed into the building management system (BMS) for automatic HVAC fault diagnosis. The semi-supervised learning process of iteratively absorbing testing data into the training pool can be irrelevant for industrial usage of the AFD methods. Generative adversarial network (GAN) is well-known as an unsupervised learning technique to enrich the training pool with fake samples that are close to real faulty samples. In this study, a hybrid generative adversarial network (GAN) is proposed combining Wasserstein GAN with traditional classifiers to perform fault diagnosis mimicking the real-world scenarios with limited faulty training samples in the training process. Experimental results on real-world datasets demonstrate the effectiveness of the proposed approach for fault diagnosis problems of AHU subsystem." @default.
- W2911935588 created "2019-02-21" @default.
- W2911935588 creator A5022647446 @default.
- W2911935588 creator A5039611523 @default.
- W2911935588 creator A5053642904 @default.
- W2911935588 creator A5059158321 @default.
- W2911935588 creator A5071914915 @default.
- W2911935588 date "2019-02-07" @default.
- W2911935588 modified "2023-10-06" @default.
- W2911935588 title "Energy Efficiency Solutions for Buildings: Automated Fault Diagnosis of Air Handling Units Using Generative Adversarial Networks" @default.
- W2911935588 cites W2051607409 @default.
- W2911935588 cites W2059697394 @default.
- W2911935588 cites W2070993393 @default.
- W2911935588 cites W2089662726 @default.
- W2911935588 cites W2098062219 @default.
- W2911935588 cites W2163121678 @default.
- W2911935588 cites W2295773848 @default.
- W2911935588 cites W2521479021 @default.
- W2911935588 cites W2740436868 @default.
- W2911935588 cites W2767547753 @default.
- W2911935588 cites W284364187 @default.
- W2911935588 cites W2896365146 @default.
- W2911935588 doi "https://doi.org/10.3390/en12030527" @default.
- W2911935588 hasPublicationYear "2019" @default.
- W2911935588 type Work @default.
- W2911935588 sameAs 2911935588 @default.
- W2911935588 citedByCount "42" @default.
- W2911935588 countsByYear W29119355882019 @default.
- W2911935588 countsByYear W29119355882020 @default.
- W2911935588 countsByYear W29119355882021 @default.
- W2911935588 countsByYear W29119355882022 @default.
- W2911935588 countsByYear W29119355882023 @default.
- W2911935588 crossrefType "journal-article" @default.
- W2911935588 hasAuthorship W2911935588A5022647446 @default.
- W2911935588 hasAuthorship W2911935588A5039611523 @default.
- W2911935588 hasAuthorship W2911935588A5053642904 @default.
- W2911935588 hasAuthorship W2911935588A5059158321 @default.
- W2911935588 hasAuthorship W2911935588A5071914915 @default.
- W2911935588 hasBestOaLocation W29119355881 @default.
- W2911935588 hasConcept C103742991 @default.
- W2911935588 hasConcept C105795698 @default.
- W2911935588 hasConcept C111919701 @default.
- W2911935588 hasConcept C119857082 @default.
- W2911935588 hasConcept C122346748 @default.
- W2911935588 hasConcept C124101348 @default.
- W2911935588 hasConcept C127313418 @default.
- W2911935588 hasConcept C127413603 @default.
- W2911935588 hasConcept C152745839 @default.
- W2911935588 hasConcept C154945302 @default.
- W2911935588 hasConcept C165205528 @default.
- W2911935588 hasConcept C172707124 @default.
- W2911935588 hasConcept C175551986 @default.
- W2911935588 hasConcept C177264268 @default.
- W2911935588 hasConcept C186370098 @default.
- W2911935588 hasConcept C199360897 @default.
- W2911935588 hasConcept C33923547 @default.
- W2911935588 hasConcept C37736160 @default.
- W2911935588 hasConcept C39890363 @default.
- W2911935588 hasConcept C41008148 @default.
- W2911935588 hasConcept C78519656 @default.
- W2911935588 hasConcept C98045186 @default.
- W2911935588 hasConceptScore W2911935588C103742991 @default.
- W2911935588 hasConceptScore W2911935588C105795698 @default.
- W2911935588 hasConceptScore W2911935588C111919701 @default.
- W2911935588 hasConceptScore W2911935588C119857082 @default.
- W2911935588 hasConceptScore W2911935588C122346748 @default.
- W2911935588 hasConceptScore W2911935588C124101348 @default.
- W2911935588 hasConceptScore W2911935588C127313418 @default.
- W2911935588 hasConceptScore W2911935588C127413603 @default.
- W2911935588 hasConceptScore W2911935588C152745839 @default.
- W2911935588 hasConceptScore W2911935588C154945302 @default.
- W2911935588 hasConceptScore W2911935588C165205528 @default.
- W2911935588 hasConceptScore W2911935588C172707124 @default.
- W2911935588 hasConceptScore W2911935588C175551986 @default.
- W2911935588 hasConceptScore W2911935588C177264268 @default.
- W2911935588 hasConceptScore W2911935588C186370098 @default.
- W2911935588 hasConceptScore W2911935588C199360897 @default.
- W2911935588 hasConceptScore W2911935588C33923547 @default.
- W2911935588 hasConceptScore W2911935588C37736160 @default.
- W2911935588 hasConceptScore W2911935588C39890363 @default.
- W2911935588 hasConceptScore W2911935588C41008148 @default.
- W2911935588 hasConceptScore W2911935588C78519656 @default.
- W2911935588 hasConceptScore W2911935588C98045186 @default.
- W2911935588 hasFunder F4320321001 @default.
- W2911935588 hasFunder F4320338464 @default.
- W2911935588 hasIssue "3" @default.
- W2911935588 hasLocation W29119355881 @default.
- W2911935588 hasLocation W29119355882 @default.
- W2911935588 hasLocation W29119355883 @default.
- W2911935588 hasOpenAccess W2911935588 @default.
- W2911935588 hasPrimaryLocation W29119355881 @default.
- W2911935588 hasRelatedWork W2347505119 @default.
- W2911935588 hasRelatedWork W2348178597 @default.
- W2911935588 hasRelatedWork W2901368259 @default.
- W2911935588 hasRelatedWork W3017161950 @default.
- W2911935588 hasRelatedWork W3024390022 @default.
- W2911935588 hasRelatedWork W3156291593 @default.
- W2911935588 hasRelatedWork W3198184493 @default.