Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912002014> ?p ?o ?g. }
- W2912002014 abstract "In carbon capture and sequestration, developing effective monitoring methods is needed to detect and respond to CO2 leakage. CO2 leakage detection methods rely on geophysical observations and monitoring sensor network. However, traditional methods usually require the development of site-specific physical models and expert interpretation, and the effectiveness of these methods can be limited to different application locations, operational scenarios, and conditions. In this paper, we developed a novel data-driven leakage detection method based on densely connected convolutional neural networks. Our method differs from conventional leakage monitoring methods by directly learning a mapping relationship between seismic data and the CO2 leakage mass. To account for the spatial and temporal characteristics of seismic data, our novel networks architecture combines 1D and 2D convolutional neural networks. To overcome the computational expense of solving optimization problems, we apply a densely-connecting strategy in our network architecture that reduces the number of network parameters. Based on the features generated by our convolutional neural networks, we further incorporate a long short-term memory network to utilize time-sequential information, which further improves the detection accuracy. Finally, we employ our detection method to synthetic seismic datasets generated based on flow simulations of a hypothetical CO2 storage scenario with injection into a partially compartmentalized sandstone storage reservoir. To evaluate method performance, we conducted multiple experiments including a random leakage test, a sequential test, and a robustness test. Numerical results show that our CO2 leakage detection method successfully detects the leakage and accurately predicts the leakage mass, suggesting that it has the potential for application in monitoring of real CO2 storage sites." @default.
- W2912002014 created "2019-02-21" @default.
- W2912002014 creator A5001857687 @default.
- W2912002014 creator A5024861962 @default.
- W2912002014 creator A5025218521 @default.
- W2912002014 creator A5033959506 @default.
- W2912002014 creator A5052676856 @default.
- W2912002014 creator A5080330902 @default.
- W2912002014 creator A5084040355 @default.
- W2912002014 date "2018-10-13" @default.
- W2912002014 modified "2023-09-27" @default.
- W2912002014 title "A Data-Driven CO2 Leakage Detection Using Seismic Data and Spatial-Temporal Densely Connected Convolutional Neural Networks" @default.
- W2912002014 cites W1500564636 @default.
- W2912002014 cites W1529355025 @default.
- W2912002014 cites W1576227399 @default.
- W2912002014 cites W1665214252 @default.
- W2912002014 cites W1686810756 @default.
- W2912002014 cites W1903029394 @default.
- W2912002014 cites W1924770834 @default.
- W2912002014 cites W1978759895 @default.
- W2912002014 cites W1995562189 @default.
- W2912002014 cites W2000229605 @default.
- W2912002014 cites W2055072688 @default.
- W2912002014 cites W2064675550 @default.
- W2912002014 cites W2066714455 @default.
- W2912002014 cites W2072807258 @default.
- W2912002014 cites W2083685841 @default.
- W2912002014 cites W2108658536 @default.
- W2912002014 cites W2116261113 @default.
- W2912002014 cites W2125838338 @default.
- W2912002014 cites W2132570026 @default.
- W2912002014 cites W2147880316 @default.
- W2912002014 cites W2194775991 @default.
- W2912002014 cites W2313771942 @default.
- W2912002014 cites W2338921032 @default.
- W2912002014 cites W2568975605 @default.
- W2912002014 cites W2614600089 @default.
- W2912002014 cites W2767471303 @default.
- W2912002014 cites W2810906745 @default.
- W2912002014 cites W2884560361 @default.
- W2912002014 cites W2963446712 @default.
- W2912002014 cites W2964010366 @default.
- W2912002014 cites W2964350391 @default.
- W2912002014 doi "https://doi.org/10.48550/arxiv.1810.05927" @default.
- W2912002014 hasPublicationYear "2018" @default.
- W2912002014 type Work @default.
- W2912002014 sameAs 2912002014 @default.
- W2912002014 citedByCount "0" @default.
- W2912002014 crossrefType "posted-content" @default.
- W2912002014 hasAuthorship W2912002014A5001857687 @default.
- W2912002014 hasAuthorship W2912002014A5024861962 @default.
- W2912002014 hasAuthorship W2912002014A5025218521 @default.
- W2912002014 hasAuthorship W2912002014A5033959506 @default.
- W2912002014 hasAuthorship W2912002014A5052676856 @default.
- W2912002014 hasAuthorship W2912002014A5080330902 @default.
- W2912002014 hasAuthorship W2912002014A5084040355 @default.
- W2912002014 hasBestOaLocation W29120020141 @default.
- W2912002014 hasConcept C104317684 @default.
- W2912002014 hasConcept C108583219 @default.
- W2912002014 hasConcept C124101348 @default.
- W2912002014 hasConcept C139719470 @default.
- W2912002014 hasConcept C153180895 @default.
- W2912002014 hasConcept C154945302 @default.
- W2912002014 hasConcept C162324750 @default.
- W2912002014 hasConcept C16910744 @default.
- W2912002014 hasConcept C185592680 @default.
- W2912002014 hasConcept C199360897 @default.
- W2912002014 hasConcept C2777042071 @default.
- W2912002014 hasConcept C41008148 @default.
- W2912002014 hasConcept C50644808 @default.
- W2912002014 hasConcept C55493867 @default.
- W2912002014 hasConcept C63479239 @default.
- W2912002014 hasConcept C79403827 @default.
- W2912002014 hasConcept C81363708 @default.
- W2912002014 hasConceptScore W2912002014C104317684 @default.
- W2912002014 hasConceptScore W2912002014C108583219 @default.
- W2912002014 hasConceptScore W2912002014C124101348 @default.
- W2912002014 hasConceptScore W2912002014C139719470 @default.
- W2912002014 hasConceptScore W2912002014C153180895 @default.
- W2912002014 hasConceptScore W2912002014C154945302 @default.
- W2912002014 hasConceptScore W2912002014C162324750 @default.
- W2912002014 hasConceptScore W2912002014C16910744 @default.
- W2912002014 hasConceptScore W2912002014C185592680 @default.
- W2912002014 hasConceptScore W2912002014C199360897 @default.
- W2912002014 hasConceptScore W2912002014C2777042071 @default.
- W2912002014 hasConceptScore W2912002014C41008148 @default.
- W2912002014 hasConceptScore W2912002014C50644808 @default.
- W2912002014 hasConceptScore W2912002014C55493867 @default.
- W2912002014 hasConceptScore W2912002014C63479239 @default.
- W2912002014 hasConceptScore W2912002014C79403827 @default.
- W2912002014 hasConceptScore W2912002014C81363708 @default.
- W2912002014 hasLocation W29120020141 @default.
- W2912002014 hasLocation W29120020142 @default.
- W2912002014 hasLocation W29120020143 @default.
- W2912002014 hasOpenAccess W2912002014 @default.
- W2912002014 hasPrimaryLocation W29120020141 @default.
- W2912002014 hasRelatedWork W2731899572 @default.
- W2912002014 hasRelatedWork W2999805992 @default.
- W2912002014 hasRelatedWork W3011074480 @default.
- W2912002014 hasRelatedWork W3116150086 @default.