Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912015447> ?p ?o ?g. }
- W2912015447 abstract "It is of crucial importance to simultaneously protect against sensitive attributes in data while building predictive models. In this paper, we tackle the problem of learning representations from raw data that are i) informative and predictive of desirable variables, and ii) private and protect against adversaries that attempt to recover sensitive variables. We cast this problem under the generative adversarial network (GAN) framework and design three components: an encoder, an ally that predicts the desired variables, and an adversary that predicts the sensitive ones. As a use case, we apply our approach to learn representations of raw student clickstream event data captured as they watch lecture videos in massive open online courses (MOOCs). Through experiments on a real- world dataset collected from a MOOC, we demonstrate that our method can learn a low-dimensional representation of each user that i) excels at classifying whether a user will answer a quiz question correctly, and ii) prevents an adversary from recovering each user’s identity. Our results indicate that our approach is effective in learning representations that are both informative and private." @default.
- W2912015447 created "2019-02-21" @default.
- W2912015447 creator A5012278585 @default.
- W2912015447 creator A5015619835 @default.
- W2912015447 creator A5020399355 @default.
- W2912015447 creator A5052709754 @default.
- W2912015447 creator A5063813962 @default.
- W2912015447 date "2018-12-01" @default.
- W2912015447 modified "2023-09-26" @default.
- W2912015447 title "Learning Informative and Private Representations via Generative Adversarial Networks" @default.
- W2912015447 cites W1492355514 @default.
- W2912015447 cites W1616697096 @default.
- W2912015447 cites W1757796397 @default.
- W2912015447 cites W1873763122 @default.
- W2912015447 cites W1982183556 @default.
- W2912015447 cites W1994740530 @default.
- W2912015447 cites W2021238795 @default.
- W2912015447 cites W2030559796 @default.
- W2912015447 cites W2037933327 @default.
- W2912015447 cites W2038558034 @default.
- W2912015447 cites W2042464029 @default.
- W2912015447 cites W2064208261 @default.
- W2912015447 cites W2064675550 @default.
- W2912015447 cites W2077414053 @default.
- W2912015447 cites W2096223017 @default.
- W2912015447 cites W2108720145 @default.
- W2912015447 cites W2113431598 @default.
- W2912015447 cites W2115209166 @default.
- W2912015447 cites W2121483459 @default.
- W2912015447 cites W2135930857 @default.
- W2912015447 cites W2159675343 @default.
- W2912015447 cites W2163605009 @default.
- W2912015447 cites W2164972124 @default.
- W2912015447 cites W2273136441 @default.
- W2912015447 cites W2341535507 @default.
- W2912015447 cites W2559094423 @default.
- W2912015447 cites W2571928268 @default.
- W2912015447 cites W2572363809 @default.
- W2912015447 cites W2575521943 @default.
- W2912015447 cites W2611285220 @default.
- W2912015447 cites W2741234481 @default.
- W2912015447 cites W2796327958 @default.
- W2912015447 cites W2797271388 @default.
- W2912015447 cites W2806245267 @default.
- W2912015447 cites W2963053914 @default.
- W2912015447 cites W2964018718 @default.
- W2912015447 cites W2964023411 @default.
- W2912015447 cites W2964308564 @default.
- W2912015447 doi "https://doi.org/10.1109/bigdata.2018.8622089" @default.
- W2912015447 hasPublicationYear "2018" @default.
- W2912015447 type Work @default.
- W2912015447 sameAs 2912015447 @default.
- W2912015447 citedByCount "14" @default.
- W2912015447 countsByYear W29120154472019 @default.
- W2912015447 countsByYear W29120154472020 @default.
- W2912015447 countsByYear W29120154472021 @default.
- W2912015447 crossrefType "proceedings-article" @default.
- W2912015447 hasAuthorship W2912015447A5012278585 @default.
- W2912015447 hasAuthorship W2912015447A5015619835 @default.
- W2912015447 hasAuthorship W2912015447A5020399355 @default.
- W2912015447 hasAuthorship W2912015447A5052709754 @default.
- W2912015447 hasAuthorship W2912015447A5063813962 @default.
- W2912015447 hasConcept C108583219 @default.
- W2912015447 hasConcept C111919701 @default.
- W2912015447 hasConcept C118505674 @default.
- W2912015447 hasConcept C119857082 @default.
- W2912015447 hasConcept C121332964 @default.
- W2912015447 hasConcept C127613066 @default.
- W2912015447 hasConcept C130436687 @default.
- W2912015447 hasConcept C132964779 @default.
- W2912015447 hasConcept C136764020 @default.
- W2912015447 hasConcept C138744977 @default.
- W2912015447 hasConcept C154945302 @default.
- W2912015447 hasConcept C17744445 @default.
- W2912015447 hasConcept C199360897 @default.
- W2912015447 hasConcept C199539241 @default.
- W2912015447 hasConcept C2776359362 @default.
- W2912015447 hasConcept C2779662365 @default.
- W2912015447 hasConcept C35578498 @default.
- W2912015447 hasConcept C37736160 @default.
- W2912015447 hasConcept C38652104 @default.
- W2912015447 hasConcept C39890363 @default.
- W2912015447 hasConcept C41008148 @default.
- W2912015447 hasConcept C41065033 @default.
- W2912015447 hasConcept C59404180 @default.
- W2912015447 hasConcept C62520636 @default.
- W2912015447 hasConcept C94625758 @default.
- W2912015447 hasConceptScore W2912015447C108583219 @default.
- W2912015447 hasConceptScore W2912015447C111919701 @default.
- W2912015447 hasConceptScore W2912015447C118505674 @default.
- W2912015447 hasConceptScore W2912015447C119857082 @default.
- W2912015447 hasConceptScore W2912015447C121332964 @default.
- W2912015447 hasConceptScore W2912015447C127613066 @default.
- W2912015447 hasConceptScore W2912015447C130436687 @default.
- W2912015447 hasConceptScore W2912015447C132964779 @default.
- W2912015447 hasConceptScore W2912015447C136764020 @default.
- W2912015447 hasConceptScore W2912015447C138744977 @default.
- W2912015447 hasConceptScore W2912015447C154945302 @default.
- W2912015447 hasConceptScore W2912015447C17744445 @default.
- W2912015447 hasConceptScore W2912015447C199360897 @default.