Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912018674> ?p ?o ?g. }
- W2912018674 endingPage "302" @default.
- W2912018674 startingPage "296" @default.
- W2912018674 abstract "Bio-electronic tongue was linked to artificial intelligence processing unit and used for classification of wines based on carboxylic acids levels, which were indirectly related to malolactic fermentation. The system employed amperometric biosensors with lactate oxidase, sarcosine oxidase, and fumarase/sarcosine oxidase in the three sensing channels. The results were processed using two statistical methods – principal component analysis (PCA) and self-organized maps (SOM) in order to classify 31 wine samples from the South Moravia region in the Czech Republic. Reference assays were carried out using the capillary electrophoresis (CE). The PCA patterns for both CE and biosensor data provided good correspondence in the clusters of samples. The SOM treatment provided a better resolution of the generated patterns of samples compared to PCA, the SOM derived clusters corresponded with the PCA classification only partially. The biosensor/SOM combination offers a novel procedure of wine classification." @default.
- W2912018674 created "2019-02-21" @default.
- W2912018674 creator A5000502084 @default.
- W2912018674 creator A5002855488 @default.
- W2912018674 creator A5007625600 @default.
- W2912018674 creator A5011789826 @default.
- W2912018674 creator A5014303538 @default.
- W2912018674 creator A5028824065 @default.
- W2912018674 creator A5043635846 @default.
- W2912018674 creator A5045301100 @default.
- W2912018674 creator A5073623754 @default.
- W2912018674 date "2019-06-01" @default.
- W2912018674 modified "2023-10-17" @default.
- W2912018674 title "A novel method for classification of wine based on organic acids" @default.
- W2912018674 cites W1475435051 @default.
- W2912018674 cites W1975566522 @default.
- W2912018674 cites W1984238973 @default.
- W2912018674 cites W1991147363 @default.
- W2912018674 cites W2006146352 @default.
- W2912018674 cites W2006522572 @default.
- W2912018674 cites W2013455870 @default.
- W2912018674 cites W2029589639 @default.
- W2912018674 cites W2031207212 @default.
- W2912018674 cites W2031848097 @default.
- W2912018674 cites W2032577198 @default.
- W2912018674 cites W2035333613 @default.
- W2912018674 cites W2042194948 @default.
- W2912018674 cites W2045588898 @default.
- W2912018674 cites W2047858504 @default.
- W2912018674 cites W2052523353 @default.
- W2912018674 cites W2063474061 @default.
- W2912018674 cites W2069789590 @default.
- W2912018674 cites W2075681262 @default.
- W2912018674 cites W2081021969 @default.
- W2912018674 cites W2089378279 @default.
- W2912018674 cites W2095867840 @default.
- W2912018674 cites W2136117242 @default.
- W2912018674 cites W2142279635 @default.
- W2912018674 cites W2164029323 @default.
- W2912018674 cites W2172212990 @default.
- W2912018674 cites W65738273 @default.
- W2912018674 cites W87042964 @default.
- W2912018674 doi "https://doi.org/10.1016/j.foodchem.2019.01.113" @default.
- W2912018674 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30744861" @default.
- W2912018674 hasPublicationYear "2019" @default.
- W2912018674 type Work @default.
- W2912018674 sameAs 2912018674 @default.
- W2912018674 citedByCount "30" @default.
- W2912018674 countsByYear W29120186742020 @default.
- W2912018674 countsByYear W29120186742021 @default.
- W2912018674 countsByYear W29120186742022 @default.
- W2912018674 countsByYear W29120186742023 @default.
- W2912018674 crossrefType "journal-article" @default.
- W2912018674 hasAuthorship W2912018674A5000502084 @default.
- W2912018674 hasAuthorship W2912018674A5002855488 @default.
- W2912018674 hasAuthorship W2912018674A5007625600 @default.
- W2912018674 hasAuthorship W2912018674A5011789826 @default.
- W2912018674 hasAuthorship W2912018674A5014303538 @default.
- W2912018674 hasAuthorship W2912018674A5028824065 @default.
- W2912018674 hasAuthorship W2912018674A5043635846 @default.
- W2912018674 hasAuthorship W2912018674A5045301100 @default.
- W2912018674 hasAuthorship W2912018674A5073623754 @default.
- W2912018674 hasConcept C139369640 @default.
- W2912018674 hasConcept C147789679 @default.
- W2912018674 hasConcept C153180895 @default.
- W2912018674 hasConcept C154945302 @default.
- W2912018674 hasConcept C160756335 @default.
- W2912018674 hasConcept C162244969 @default.
- W2912018674 hasConcept C17525397 @default.
- W2912018674 hasConcept C185592680 @default.
- W2912018674 hasConcept C27438332 @default.
- W2912018674 hasConcept C2775920511 @default.
- W2912018674 hasConcept C2777756961 @default.
- W2912018674 hasConcept C2779943223 @default.
- W2912018674 hasConcept C2900643 @default.
- W2912018674 hasConcept C31903555 @default.
- W2912018674 hasConcept C41008148 @default.
- W2912018674 hasConcept C43617362 @default.
- W2912018674 hasConcept C515207424 @default.
- W2912018674 hasConcept C523546767 @default.
- W2912018674 hasConcept C52859227 @default.
- W2912018674 hasConcept C54355233 @default.
- W2912018674 hasConcept C55493867 @default.
- W2912018674 hasConcept C55952523 @default.
- W2912018674 hasConcept C78945660 @default.
- W2912018674 hasConcept C86803240 @default.
- W2912018674 hasConcept C8868529 @default.
- W2912018674 hasConceptScore W2912018674C139369640 @default.
- W2912018674 hasConceptScore W2912018674C147789679 @default.
- W2912018674 hasConceptScore W2912018674C153180895 @default.
- W2912018674 hasConceptScore W2912018674C154945302 @default.
- W2912018674 hasConceptScore W2912018674C160756335 @default.
- W2912018674 hasConceptScore W2912018674C162244969 @default.
- W2912018674 hasConceptScore W2912018674C17525397 @default.
- W2912018674 hasConceptScore W2912018674C185592680 @default.
- W2912018674 hasConceptScore W2912018674C27438332 @default.
- W2912018674 hasConceptScore W2912018674C2775920511 @default.
- W2912018674 hasConceptScore W2912018674C2777756961 @default.