Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912031002> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2912031002 endingPage "57" @default.
- W2912031002 startingPage "47" @default.
- W2912031002 abstract "Clinical histological grading of hepatocellular carcinoma (HCC) differentiation is of great significance in clinical diagnoses, treatments, and prognoses. However, it is challenging for radiologists to evaluate HCC gradings from medical images.In this study, a novel deep neural network was developed by combining the squeeze-and-excitation networks (SENets) in a three-dimensional (3D) densely connected convolutional network (DenseNet), which is referred to as a 3D SE-DenseNet, for the classification of HCC grading using enhanced clinical magnetic resonance (MR) images obtained from two different clinical centers.In the proposed architecture, the SENet was added as an additional layer between the dense blocks of the 3D DenseNet, to mitigate the impact of feature redundancy. For the HCC grading task, the 3D SE-DenseNet was trained after data augmentation, and it outperformed the 3D DenseNet based on the clinical dataset.The quantitative evaluations of the 3D SE-DenseNet on a two-class HCC grading task were conducted based on the dataset, which included 213 samples of the dynamic enhanced MR images. The proposed 3D SE-DenseNet demonstrated an accuracy of 83%, when compared with the 72% accuracy of the 3D DenseNet.Owing to the advantage of useful automatic feature learning by the SE layer, the 3D SE-DenseNet can simultaneously handle useful feature enhancement and superfluous feature suppression. The quantitative experiments confirm the excellent performance of the 3D SE-DenseNet in the evaluation of the HCC grading." @default.
- W2912031002 created "2019-02-21" @default.
- W2912031002 creator A5004509724 @default.
- W2912031002 creator A5010025721 @default.
- W2912031002 creator A5021953784 @default.
- W2912031002 creator A5029844515 @default.
- W2912031002 creator A5033688199 @default.
- W2912031002 creator A5051691879 @default.
- W2912031002 creator A5068596699 @default.
- W2912031002 creator A5090531660 @default.
- W2912031002 date "2019-04-01" @default.
- W2912031002 modified "2023-10-17" @default.
- W2912031002 title "Grading of hepatocellular carcinoma using 3D SE-DenseNet in dynamic enhanced MR images" @default.
- W2912031002 cites W1964829819 @default.
- W2912031002 cites W1981263152 @default.
- W2912031002 cites W2047283411 @default.
- W2912031002 cites W2047424515 @default.
- W2912031002 cites W2116531017 @default.
- W2912031002 cites W2284453114 @default.
- W2912031002 cites W2403729827 @default.
- W2912031002 cites W2580835947 @default.
- W2912031002 cites W2598574140 @default.
- W2912031002 cites W2600701715 @default.
- W2912031002 cites W2650249087 @default.
- W2912031002 cites W2766353760 @default.
- W2912031002 cites W2770261599 @default.
- W2912031002 cites W2779494124 @default.
- W2912031002 cites W2802605195 @default.
- W2912031002 cites W2808184309 @default.
- W2912031002 cites W4249221679 @default.
- W2912031002 doi "https://doi.org/10.1016/j.compbiomed.2019.01.026" @default.
- W2912031002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30776671" @default.
- W2912031002 hasPublicationYear "2019" @default.
- W2912031002 type Work @default.
- W2912031002 sameAs 2912031002 @default.
- W2912031002 citedByCount "30" @default.
- W2912031002 countsByYear W29120310022020 @default.
- W2912031002 countsByYear W29120310022021 @default.
- W2912031002 countsByYear W29120310022022 @default.
- W2912031002 countsByYear W29120310022023 @default.
- W2912031002 crossrefType "journal-article" @default.
- W2912031002 hasAuthorship W2912031002A5004509724 @default.
- W2912031002 hasAuthorship W2912031002A5010025721 @default.
- W2912031002 hasAuthorship W2912031002A5021953784 @default.
- W2912031002 hasAuthorship W2912031002A5029844515 @default.
- W2912031002 hasAuthorship W2912031002A5033688199 @default.
- W2912031002 hasAuthorship W2912031002A5051691879 @default.
- W2912031002 hasAuthorship W2912031002A5068596699 @default.
- W2912031002 hasAuthorship W2912031002A5090531660 @default.
- W2912031002 hasConcept C127413603 @default.
- W2912031002 hasConcept C147176958 @default.
- W2912031002 hasConcept C153180895 @default.
- W2912031002 hasConcept C154945302 @default.
- W2912031002 hasConcept C2777286243 @default.
- W2912031002 hasConcept C2778019345 @default.
- W2912031002 hasConcept C41008148 @default.
- W2912031002 hasConcept C502942594 @default.
- W2912031002 hasConcept C71924100 @default.
- W2912031002 hasConcept C81363708 @default.
- W2912031002 hasConceptScore W2912031002C127413603 @default.
- W2912031002 hasConceptScore W2912031002C147176958 @default.
- W2912031002 hasConceptScore W2912031002C153180895 @default.
- W2912031002 hasConceptScore W2912031002C154945302 @default.
- W2912031002 hasConceptScore W2912031002C2777286243 @default.
- W2912031002 hasConceptScore W2912031002C2778019345 @default.
- W2912031002 hasConceptScore W2912031002C41008148 @default.
- W2912031002 hasConceptScore W2912031002C502942594 @default.
- W2912031002 hasConceptScore W2912031002C71924100 @default.
- W2912031002 hasConceptScore W2912031002C81363708 @default.
- W2912031002 hasFunder F4320321001 @default.
- W2912031002 hasFunder F4320321133 @default.
- W2912031002 hasFunder F4320322769 @default.
- W2912031002 hasFunder F4320326708 @default.
- W2912031002 hasLocation W29120310021 @default.
- W2912031002 hasLocation W29120310022 @default.
- W2912031002 hasOpenAccess W2912031002 @default.
- W2912031002 hasPrimaryLocation W29120310021 @default.
- W2912031002 hasRelatedWork W2175746458 @default.
- W2912031002 hasRelatedWork W2732542196 @default.
- W2912031002 hasRelatedWork W2738221750 @default.
- W2912031002 hasRelatedWork W2758063741 @default.
- W2912031002 hasRelatedWork W2760085659 @default.
- W2912031002 hasRelatedWork W2912288872 @default.
- W2912031002 hasRelatedWork W3012978760 @default.
- W2912031002 hasRelatedWork W3081496756 @default.
- W2912031002 hasRelatedWork W3093612317 @default.
- W2912031002 hasRelatedWork W4304820710 @default.
- W2912031002 hasVolume "107" @default.
- W2912031002 isParatext "false" @default.
- W2912031002 isRetracted "false" @default.
- W2912031002 magId "2912031002" @default.
- W2912031002 workType "article" @default.