Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912052484> ?p ?o ?g. }
- W2912052484 endingPage "275" @default.
- W2912052484 startingPage "265" @default.
- W2912052484 abstract "We present predictive multiscale models of the multiaxial strain-sensing response of conductive CNT-polymer composites. Detailed physically-based finite element (FE) models at the micron scale are used to produce training data for an artificial neural network; the latter is then used, at macroscopic scale, to predict the electro-mechanical response of components of arbitrary shape subject to a non-uniform, multiaxial strain field, allowing savings in computational time of six orders of magnitude. We apply this methodology to explore the application of CNT-polymer composites to the construction of different types of sensors and to damage detection." @default.
- W2912052484 created "2019-02-21" @default.
- W2912052484 creator A5028408305 @default.
- W2912052484 creator A5064884173 @default.
- W2912052484 creator A5083844533 @default.
- W2912052484 date "2019-05-01" @default.
- W2912052484 modified "2023-10-04" @default.
- W2912052484 title "Application of machine learning to predict the multiaxial strain-sensing response of CNT-polymer composites" @default.
- W2912052484 cites W1138250963 @default.
- W2912052484 cites W1966664568 @default.
- W2912052484 cites W1977185509 @default.
- W2912052484 cites W1980158013 @default.
- W2912052484 cites W1982193100 @default.
- W2912052484 cites W1988887547 @default.
- W2912052484 cites W1994584113 @default.
- W2912052484 cites W1998781394 @default.
- W2912052484 cites W2000595660 @default.
- W2912052484 cites W2003946565 @default.
- W2912052484 cites W2016804773 @default.
- W2912052484 cites W2022568937 @default.
- W2912052484 cites W2040667928 @default.
- W2912052484 cites W2041913077 @default.
- W2912052484 cites W2057878036 @default.
- W2912052484 cites W2064888682 @default.
- W2912052484 cites W2074766298 @default.
- W2912052484 cites W2075807854 @default.
- W2912052484 cites W2080659521 @default.
- W2912052484 cites W2094963548 @default.
- W2912052484 cites W2143143768 @default.
- W2912052484 cites W2158570263 @default.
- W2912052484 cites W2464725281 @default.
- W2912052484 cites W2532275127 @default.
- W2912052484 cites W2566642125 @default.
- W2912052484 cites W2620687153 @default.
- W2912052484 cites W2786674403 @default.
- W2912052484 cites W2790589708 @default.
- W2912052484 cites W4239266051 @default.
- W2912052484 doi "https://doi.org/10.1016/j.carbon.2019.02.001" @default.
- W2912052484 hasPublicationYear "2019" @default.
- W2912052484 type Work @default.
- W2912052484 sameAs 2912052484 @default.
- W2912052484 citedByCount "63" @default.
- W2912052484 countsByYear W29120524842019 @default.
- W2912052484 countsByYear W29120524842020 @default.
- W2912052484 countsByYear W29120524842021 @default.
- W2912052484 countsByYear W29120524842022 @default.
- W2912052484 countsByYear W29120524842023 @default.
- W2912052484 crossrefType "journal-article" @default.
- W2912052484 hasAuthorship W2912052484A5028408305 @default.
- W2912052484 hasAuthorship W2912052484A5064884173 @default.
- W2912052484 hasAuthorship W2912052484A5083844533 @default.
- W2912052484 hasBestOaLocation W29120524842 @default.
- W2912052484 hasConcept C121332964 @default.
- W2912052484 hasConcept C126322002 @default.
- W2912052484 hasConcept C127413603 @default.
- W2912052484 hasConcept C135628077 @default.
- W2912052484 hasConcept C154945302 @default.
- W2912052484 hasConcept C159985019 @default.
- W2912052484 hasConcept C192562407 @default.
- W2912052484 hasConcept C202374169 @default.
- W2912052484 hasConcept C202444582 @default.
- W2912052484 hasConcept C2778022156 @default.
- W2912052484 hasConcept C2778755073 @default.
- W2912052484 hasConcept C33923547 @default.
- W2912052484 hasConcept C41008148 @default.
- W2912052484 hasConcept C50644808 @default.
- W2912052484 hasConcept C521977710 @default.
- W2912052484 hasConcept C62520636 @default.
- W2912052484 hasConcept C66938386 @default.
- W2912052484 hasConcept C71924100 @default.
- W2912052484 hasConcept C9652623 @default.
- W2912052484 hasConceptScore W2912052484C121332964 @default.
- W2912052484 hasConceptScore W2912052484C126322002 @default.
- W2912052484 hasConceptScore W2912052484C127413603 @default.
- W2912052484 hasConceptScore W2912052484C135628077 @default.
- W2912052484 hasConceptScore W2912052484C154945302 @default.
- W2912052484 hasConceptScore W2912052484C159985019 @default.
- W2912052484 hasConceptScore W2912052484C192562407 @default.
- W2912052484 hasConceptScore W2912052484C202374169 @default.
- W2912052484 hasConceptScore W2912052484C202444582 @default.
- W2912052484 hasConceptScore W2912052484C2778022156 @default.
- W2912052484 hasConceptScore W2912052484C2778755073 @default.
- W2912052484 hasConceptScore W2912052484C33923547 @default.
- W2912052484 hasConceptScore W2912052484C41008148 @default.
- W2912052484 hasConceptScore W2912052484C50644808 @default.
- W2912052484 hasConceptScore W2912052484C521977710 @default.
- W2912052484 hasConceptScore W2912052484C62520636 @default.
- W2912052484 hasConceptScore W2912052484C66938386 @default.
- W2912052484 hasConceptScore W2912052484C71924100 @default.
- W2912052484 hasConceptScore W2912052484C9652623 @default.
- W2912052484 hasLocation W29120524841 @default.
- W2912052484 hasLocation W29120524842 @default.
- W2912052484 hasOpenAccess W2912052484 @default.
- W2912052484 hasPrimaryLocation W29120524841 @default.
- W2912052484 hasRelatedWork W2087999094 @default.
- W2912052484 hasRelatedWork W2137307547 @default.
- W2912052484 hasRelatedWork W2168702377 @default.
- W2912052484 hasRelatedWork W2380293314 @default.