Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912052494> ?p ?o ?g. }
- W2912052494 endingPage "R599" @default.
- W2912052494 startingPage "R583" @default.
- W2912052494 abstract "Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method." @default.
- W2912052494 created "2019-02-21" @default.
- W2912052494 creator A5050749830 @default.
- W2912052494 creator A5078652354 @default.
- W2912052494 date "2019-07-01" @default.
- W2912052494 modified "2023-10-16" @default.
- W2912052494 title "Deep-learning inversion: A next-generation seismic velocity model building method" @default.
- W2912052494 cites W1512208174 @default.
- W2912052494 cites W1806891645 @default.
- W2912052494 cites W1885185971 @default.
- W2912052494 cites W1901129140 @default.
- W2912052494 cites W1903029394 @default.
- W2912052494 cites W1910501430 @default.
- W2912052494 cites W1964127179 @default.
- W2912052494 cites W1975321147 @default.
- W2912052494 cites W1988115241 @default.
- W2912052494 cites W2009552164 @default.
- W2912052494 cites W2015861736 @default.
- W2912052494 cites W2024829194 @default.
- W2912052494 cites W2025605741 @default.
- W2912052494 cites W2026503114 @default.
- W2912052494 cites W2037642501 @default.
- W2912052494 cites W2053376610 @default.
- W2912052494 cites W2062227835 @default.
- W2912052494 cites W2076211048 @default.
- W2912052494 cites W2082533757 @default.
- W2912052494 cites W2085807520 @default.
- W2912052494 cites W2087783594 @default.
- W2912052494 cites W2097814961 @default.
- W2912052494 cites W2100245965 @default.
- W2912052494 cites W2104498626 @default.
- W2912052494 cites W2110652811 @default.
- W2912052494 cites W2112546238 @default.
- W2912052494 cites W2125916088 @default.
- W2912052494 cites W2132966115 @default.
- W2912052494 cites W2154818083 @default.
- W2912052494 cites W2165698076 @default.
- W2912052494 cites W2166525224 @default.
- W2912052494 cites W2168331961 @default.
- W2912052494 cites W2169129525 @default.
- W2912052494 cites W2329451799 @default.
- W2912052494 cites W2345010043 @default.
- W2912052494 cites W2417420177 @default.
- W2912052494 cites W2529108047 @default.
- W2912052494 cites W2574952845 @default.
- W2912052494 cites W2592421213 @default.
- W2912052494 cites W2605232094 @default.
- W2912052494 cites W2745439097 @default.
- W2912052494 cites W2771203173 @default.
- W2912052494 cites W2773335402 @default.
- W2912052494 cites W2776585113 @default.
- W2912052494 cites W2804494384 @default.
- W2912052494 cites W2886381392 @default.
- W2912052494 cites W2890946821 @default.
- W2912052494 cites W2891713389 @default.
- W2912052494 cites W2919115771 @default.
- W2912052494 cites W2950936580 @default.
- W2912052494 cites W2962793481 @default.
- W2912052494 cites W4239510810 @default.
- W2912052494 cites W937846259 @default.
- W2912052494 doi "https://doi.org/10.1190/geo2018-0249.1" @default.
- W2912052494 hasPublicationYear "2019" @default.
- W2912052494 type Work @default.
- W2912052494 sameAs 2912052494 @default.
- W2912052494 citedByCount "280" @default.
- W2912052494 countsByYear W29120524942019 @default.
- W2912052494 countsByYear W29120524942020 @default.
- W2912052494 countsByYear W29120524942021 @default.
- W2912052494 countsByYear W29120524942022 @default.
- W2912052494 countsByYear W29120524942023 @default.
- W2912052494 crossrefType "journal-article" @default.
- W2912052494 hasAuthorship W2912052494A5050749830 @default.
- W2912052494 hasAuthorship W2912052494A5078652354 @default.
- W2912052494 hasBestOaLocation W29120524942 @default.
- W2912052494 hasConcept C108583219 @default.
- W2912052494 hasConcept C11413529 @default.
- W2912052494 hasConcept C121332964 @default.
- W2912052494 hasConcept C122959257 @default.
- W2912052494 hasConcept C127313418 @default.
- W2912052494 hasConcept C153294291 @default.
- W2912052494 hasConcept C154945302 @default.
- W2912052494 hasConcept C165205528 @default.
- W2912052494 hasConcept C169744125 @default.
- W2912052494 hasConcept C1893757 @default.
- W2912052494 hasConcept C189474733 @default.
- W2912052494 hasConcept C24552861 @default.
- W2912052494 hasConcept C39267094 @default.
- W2912052494 hasConcept C41008148 @default.
- W2912052494 hasConcept C50644808 @default.
- W2912052494 hasConcept C62520636 @default.
- W2912052494 hasConcept C67236022 @default.
- W2912052494 hasConcept C77928131 @default.
- W2912052494 hasConcept C79675319 @default.
- W2912052494 hasConcept C8058405 @default.
- W2912052494 hasConcept C81363708 @default.
- W2912052494 hasConceptScore W2912052494C108583219 @default.
- W2912052494 hasConceptScore W2912052494C11413529 @default.
- W2912052494 hasConceptScore W2912052494C121332964 @default.