Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912059704> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2912059704 abstract "Digital reconstruction (tracing) of neuron morphology in volumetric microscopy images is critical for the analysis and understanding of neuron function. However, most of the existing neuron tracing methods are not applicable in challenging datasets where the neuron structures are contaminated by noises or have discontinued segments. In this paper, we propose a segmentation method, which serves as a preprocessing step prior to applying reconstruction methods, based on deep learning to identify the location of neuronal voxels. This preprocessing step is expected to enhance the neuronal structures and reduce the impact of image noise in the data, which would result in improved reconstruction results. We train 3D fully convolutional networks (FCNs) for segmenting the neuronal microscopy images in an end-to-end manner. Specifically, the V-Net architecture, which is a 3D FCN, is improved by using anisotropic convolution kernels and changing the number of layers to fit our neuron datasets. The improved V-Net takes 3D microscopy images as the inputs and their voxel-wise segmentation maps as the outputs. Experimental results show that this network improved the neuron tracing performance significantly in many challenging datasets when using different reconstruction methods." @default.
- W2912059704 created "2019-02-21" @default.
- W2912059704 creator A5011466255 @default.
- W2912059704 creator A5011942105 @default.
- W2912059704 creator A5017353282 @default.
- W2912059704 creator A5040971537 @default.
- W2912059704 creator A5070569058 @default.
- W2912059704 date "2018-12-01" @default.
- W2912059704 modified "2023-10-16" @default.
- W2912059704 title "Improved V-Net Based Image Segmentation for 3D Neuron Reconstruction" @default.
- W2912059704 cites W1832101600 @default.
- W2912059704 cites W1885626623 @default.
- W2912059704 cites W1983364832 @default.
- W2912059704 cites W1989396876 @default.
- W2912059704 cites W2014281241 @default.
- W2912059704 cites W2018227909 @default.
- W2912059704 cites W2019305522 @default.
- W2912059704 cites W2052202330 @default.
- W2912059704 cites W2082526668 @default.
- W2912059704 cites W2092859932 @default.
- W2912059704 cites W2124257654 @default.
- W2912059704 cites W2134557905 @default.
- W2912059704 cites W2156012604 @default.
- W2912059704 cites W2156114286 @default.
- W2912059704 cites W2161944843 @default.
- W2912059704 cites W2194775991 @default.
- W2912059704 cites W2196620636 @default.
- W2912059704 cites W2404192493 @default.
- W2912059704 cites W2584131486 @default.
- W2912059704 cites W2594660495 @default.
- W2912059704 cites W2783547169 @default.
- W2912059704 cites W2962731536 @default.
- W2912059704 cites W2962914239 @default.
- W2912059704 cites W3124802609 @default.
- W2912059704 doi "https://doi.org/10.1109/bibm.2018.8621126" @default.
- W2912059704 hasPublicationYear "2018" @default.
- W2912059704 type Work @default.
- W2912059704 sameAs 2912059704 @default.
- W2912059704 citedByCount "12" @default.
- W2912059704 countsByYear W29120597042019 @default.
- W2912059704 countsByYear W29120597042021 @default.
- W2912059704 countsByYear W29120597042022 @default.
- W2912059704 countsByYear W29120597042023 @default.
- W2912059704 crossrefType "proceedings-article" @default.
- W2912059704 hasAuthorship W2912059704A5011466255 @default.
- W2912059704 hasAuthorship W2912059704A5011942105 @default.
- W2912059704 hasAuthorship W2912059704A5017353282 @default.
- W2912059704 hasAuthorship W2912059704A5040971537 @default.
- W2912059704 hasAuthorship W2912059704A5070569058 @default.
- W2912059704 hasConcept C111919701 @default.
- W2912059704 hasConcept C124504099 @default.
- W2912059704 hasConcept C138673069 @default.
- W2912059704 hasConcept C153180895 @default.
- W2912059704 hasConcept C154945302 @default.
- W2912059704 hasConcept C31972630 @default.
- W2912059704 hasConcept C34736171 @default.
- W2912059704 hasConcept C41008148 @default.
- W2912059704 hasConcept C45347329 @default.
- W2912059704 hasConcept C50644808 @default.
- W2912059704 hasConcept C54170458 @default.
- W2912059704 hasConcept C89600930 @default.
- W2912059704 hasConceptScore W2912059704C111919701 @default.
- W2912059704 hasConceptScore W2912059704C124504099 @default.
- W2912059704 hasConceptScore W2912059704C138673069 @default.
- W2912059704 hasConceptScore W2912059704C153180895 @default.
- W2912059704 hasConceptScore W2912059704C154945302 @default.
- W2912059704 hasConceptScore W2912059704C31972630 @default.
- W2912059704 hasConceptScore W2912059704C34736171 @default.
- W2912059704 hasConceptScore W2912059704C41008148 @default.
- W2912059704 hasConceptScore W2912059704C45347329 @default.
- W2912059704 hasConceptScore W2912059704C50644808 @default.
- W2912059704 hasConceptScore W2912059704C54170458 @default.
- W2912059704 hasConceptScore W2912059704C89600930 @default.
- W2912059704 hasLocation W29120597041 @default.
- W2912059704 hasOpenAccess W2912059704 @default.
- W2912059704 hasPrimaryLocation W29120597041 @default.
- W2912059704 hasRelatedWork W1507266234 @default.
- W2912059704 hasRelatedWork W1669643531 @default.
- W2912059704 hasRelatedWork W1721780360 @default.
- W2912059704 hasRelatedWork W2036075313 @default.
- W2912059704 hasRelatedWork W2110230079 @default.
- W2912059704 hasRelatedWork W2117664411 @default.
- W2912059704 hasRelatedWork W2117933325 @default.
- W2912059704 hasRelatedWork W2122581818 @default.
- W2912059704 hasRelatedWork W2159066190 @default.
- W2912059704 hasRelatedWork W2739874619 @default.
- W2912059704 isParatext "false" @default.
- W2912059704 isRetracted "false" @default.
- W2912059704 magId "2912059704" @default.
- W2912059704 workType "article" @default.