Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912059729> ?p ?o ?g. }
- W2912059729 endingPage "368" @default.
- W2912059729 startingPage "368" @default.
- W2912059729 abstract "The main goal of this study was to use the synthetic minority oversampling technique (SMOTE) to expand the quantity of landslide samples for machine learning methods (i.e., support vector machine (SVM), logistic regression (LR), artificial neural network (ANN), and random forest (RF)) to produce high-quality landslide susceptibility maps for Lishui City in Zhejiang Province, China. Landslide-related factors were extracted from topographic maps, geological maps, and satellite images. Twelve factors were selected as independent variables using correlation coefficient analysis and the neighborhood rough set (NRS) method. In total, 288 soil landslides were mapped using field surveys, historical records, and satellite images. The landslides were randomly divided into two datasets: 70% of all landslides were selected as the original training dataset and 30% were used for validation. Then, SMOTE was employed to generate datasets with sizes ranging from two to thirty times that of the training dataset to establish and compare the four machine learning methods for landslide susceptibility mapping. In addition, we used slope units to subdivide the terrain to determine the landslide susceptibility. Finally, the landslide susceptibility maps were validated using statistical indexes and the area under the curve (AUC). The results indicated that the performances of the four machine learning methods showed different levels of improvement as the sample sizes increased. The RF model exhibited a more substantial improvement (AUC improved by 24.12%) than did the ANN (18.94%), SVM (17.77%), and LR (3.00%) models. Furthermore, the ANN model achieved the highest predictive ability (AUC = 0.98), followed by the RF (AUC = 0.96), SVM (AUC = 0.94), and LR (AUC = 0.79) models. This approach significantly improves the performance of machine learning techniques for landslide susceptibility mapping, thereby providing a better tool for reducing the impacts of landslide disasters." @default.
- W2912059729 created "2019-02-21" @default.
- W2912059729 creator A5041093991 @default.
- W2912059729 creator A5041816822 @default.
- W2912059729 creator A5042224496 @default.
- W2912059729 creator A5048474193 @default.
- W2912059729 creator A5061527815 @default.
- W2912059729 creator A5089026508 @default.
- W2912059729 date "2019-01-28" @default.
- W2912059729 modified "2023-10-18" @default.
- W2912059729 title "Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China" @default.
- W2912059729 cites W1805752680 @default.
- W2912059729 cites W1964096310 @default.
- W2912059729 cites W1979408254 @default.
- W2912059729 cites W1979486410 @default.
- W2912059729 cites W1983631475 @default.
- W2912059729 cites W1989158271 @default.
- W2912059729 cites W1992329860 @default.
- W2912059729 cites W2006818562 @default.
- W2912059729 cites W2006968845 @default.
- W2912059729 cites W2008811360 @default.
- W2912059729 cites W2010103528 @default.
- W2912059729 cites W2021765639 @default.
- W2912059729 cites W2023203753 @default.
- W2912059729 cites W2029816621 @default.
- W2912059729 cites W2037768558 @default.
- W2912059729 cites W2054512946 @default.
- W2912059729 cites W2066848039 @default.
- W2912059729 cites W2071068479 @default.
- W2912059729 cites W2075918609 @default.
- W2912059729 cites W2078461092 @default.
- W2912059729 cites W2082208114 @default.
- W2912059729 cites W2087604686 @default.
- W2912059729 cites W2088730795 @default.
- W2912059729 cites W2089314377 @default.
- W2912059729 cites W2090462997 @default.
- W2912059729 cites W2105189544 @default.
- W2912059729 cites W2128964295 @default.
- W2912059729 cites W2130089609 @default.
- W2912059729 cites W2143192068 @default.
- W2912059729 cites W2143648430 @default.
- W2912059729 cites W2147555471 @default.
- W2912059729 cites W2148143831 @default.
- W2912059729 cites W2158633287 @default.
- W2912059729 cites W2163039960 @default.
- W2912059729 cites W2287278712 @default.
- W2912059729 cites W2296302855 @default.
- W2912059729 cites W2312767325 @default.
- W2912059729 cites W2336394836 @default.
- W2912059729 cites W2342016430 @default.
- W2912059729 cites W2350578059 @default.
- W2912059729 cites W2417137833 @default.
- W2912059729 cites W2489814317 @default.
- W2912059729 cites W2511416858 @default.
- W2912059729 cites W2534560594 @default.
- W2912059729 cites W2567854072 @default.
- W2912059729 cites W2579180916 @default.
- W2912059729 cites W2592104387 @default.
- W2912059729 cites W2622828109 @default.
- W2912059729 cites W2731040012 @default.
- W2912059729 cites W2753524450 @default.
- W2912059729 cites W2754783577 @default.
- W2912059729 cites W2770617885 @default.
- W2912059729 cites W2774595919 @default.
- W2912059729 cites W2775745878 @default.
- W2912059729 cites W2777380340 @default.
- W2912059729 cites W2780363565 @default.
- W2912059729 cites W2789555074 @default.
- W2912059729 cites W2791665776 @default.
- W2912059729 cites W2885746866 @default.
- W2912059729 cites W2892437484 @default.
- W2912059729 cites W2894082056 @default.
- W2912059729 cites W2911964244 @default.
- W2912059729 cites W4211056572 @default.
- W2912059729 cites W4300514144 @default.
- W2912059729 doi "https://doi.org/10.3390/ijerph16030368" @default.
- W2912059729 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6388203" @default.
- W2912059729 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30696105" @default.
- W2912059729 hasPublicationYear "2019" @default.
- W2912059729 type Work @default.
- W2912059729 sameAs 2912059729 @default.
- W2912059729 citedByCount "56" @default.
- W2912059729 countsByYear W29120597292020 @default.
- W2912059729 countsByYear W29120597292021 @default.
- W2912059729 countsByYear W29120597292022 @default.
- W2912059729 countsByYear W29120597292023 @default.
- W2912059729 crossrefType "journal-article" @default.
- W2912059729 hasAuthorship W2912059729A5041093991 @default.
- W2912059729 hasAuthorship W2912059729A5041816822 @default.
- W2912059729 hasAuthorship W2912059729A5042224496 @default.
- W2912059729 hasAuthorship W2912059729A5048474193 @default.
- W2912059729 hasAuthorship W2912059729A5061527815 @default.
- W2912059729 hasAuthorship W2912059729A5089026508 @default.
- W2912059729 hasBestOaLocation W29120597291 @default.
- W2912059729 hasConcept C114793014 @default.
- W2912059729 hasConcept C119857082 @default.
- W2912059729 hasConcept C12267149 @default.
- W2912059729 hasConcept C124101348 @default.