Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912060715> ?p ?o ?g. }
- W2912060715 endingPage "1361" @default.
- W2912060715 startingPage "1348" @default.
- W2912060715 abstract "Recently, Convolutional Neural Networks have shown promising results for 3D geometry prediction. They can make predictions from very little input data such as a single color image. A major limitation of such approaches is that they only predict a coarse resolution voxel grid, which does not capture the surface of the objects well. We propose a general framework, called hierarchical surface prediction (HSP), which facilitates prediction of high resolution voxel grids. The main insight is that it is sufficient to predict high resolution voxels around the predicted surfaces. The exterior and interior of the objects can be represented with coarse resolution voxels. This allows us to predict significantly higher resolution voxel grids around the surface, from which triangle meshes can be extracted. Additionally it allows us to predict properties such as surface color which are only defined on the surface. Our approach is not dependent on a specific input type. We show results for geometry prediction from color images and depth images. Our analysis shows that our high resolution predictions are more accurate than low resolution predictions." @default.
- W2912060715 created "2019-02-21" @default.
- W2912060715 creator A5001594573 @default.
- W2912060715 creator A5070290758 @default.
- W2912060715 creator A5083264162 @default.
- W2912060715 date "2020-06-01" @default.
- W2912060715 modified "2023-10-16" @default.
- W2912060715 title "Hierarchical Surface Prediction" @default.
- W2912060715 cites W1495759771 @default.
- W2912060715 cites W1853039947 @default.
- W2912060715 cites W1867429401 @default.
- W2912060715 cites W1893912098 @default.
- W2912060715 cites W1992178727 @default.
- W2912060715 cites W2009422376 @default.
- W2912060715 cites W2013345945 @default.
- W2912060715 cites W2013483851 @default.
- W2912060715 cites W2046629160 @default.
- W2912060715 cites W2066090933 @default.
- W2912060715 cites W2071398263 @default.
- W2912060715 cites W2071906076 @default.
- W2912060715 cites W2104697781 @default.
- W2912060715 cites W2119493293 @default.
- W2912060715 cites W2120294288 @default.
- W2912060715 cites W2138165282 @default.
- W2912060715 cites W2142792228 @default.
- W2912060715 cites W2151996626 @default.
- W2912060715 cites W2167335287 @default.
- W2912060715 cites W2168545424 @default.
- W2912060715 cites W2229412420 @default.
- W2912060715 cites W2237250383 @default.
- W2912060715 cites W2293078015 @default.
- W2912060715 cites W2342277278 @default.
- W2912060715 cites W2495603374 @default.
- W2912060715 cites W2548527721 @default.
- W2912060715 cites W2556802233 @default.
- W2912060715 cites W2557269700 @default.
- W2912060715 cites W2559882727 @default.
- W2912060715 cites W2560474170 @default.
- W2912060715 cites W2560722161 @default.
- W2912060715 cites W2603429625 @default.
- W2912060715 cites W2604493845 @default.
- W2912060715 cites W2606492274 @default.
- W2912060715 cites W2609754928 @default.
- W2912060715 cites W2963026686 @default.
- W2912060715 cites W2963564867 @default.
- W2912060715 cites W2963739349 @default.
- W2912060715 cites W2964137676 @default.
- W2912060715 doi "https://doi.org/10.1109/tpami.2019.2896296" @default.
- W2912060715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30714908" @default.
- W2912060715 hasPublicationYear "2020" @default.
- W2912060715 type Work @default.
- W2912060715 sameAs 2912060715 @default.
- W2912060715 citedByCount "9" @default.
- W2912060715 countsByYear W29120607152019 @default.
- W2912060715 countsByYear W29120607152020 @default.
- W2912060715 countsByYear W29120607152021 @default.
- W2912060715 countsByYear W29120607152022 @default.
- W2912060715 crossrefType "journal-article" @default.
- W2912060715 hasAuthorship W2912060715A5001594573 @default.
- W2912060715 hasAuthorship W2912060715A5070290758 @default.
- W2912060715 hasAuthorship W2912060715A5083264162 @default.
- W2912060715 hasBestOaLocation W29120607151 @default.
- W2912060715 hasConcept C11413529 @default.
- W2912060715 hasConcept C121684516 @default.
- W2912060715 hasConcept C138268822 @default.
- W2912060715 hasConcept C153180895 @default.
- W2912060715 hasConcept C154945302 @default.
- W2912060715 hasConcept C187691185 @default.
- W2912060715 hasConcept C205372480 @default.
- W2912060715 hasConcept C2524010 @default.
- W2912060715 hasConcept C2776799497 @default.
- W2912060715 hasConcept C31487907 @default.
- W2912060715 hasConcept C31972630 @default.
- W2912060715 hasConcept C33923547 @default.
- W2912060715 hasConcept C41008148 @default.
- W2912060715 hasConcept C54170458 @default.
- W2912060715 hasConcept C81363708 @default.
- W2912060715 hasConceptScore W2912060715C11413529 @default.
- W2912060715 hasConceptScore W2912060715C121684516 @default.
- W2912060715 hasConceptScore W2912060715C138268822 @default.
- W2912060715 hasConceptScore W2912060715C153180895 @default.
- W2912060715 hasConceptScore W2912060715C154945302 @default.
- W2912060715 hasConceptScore W2912060715C187691185 @default.
- W2912060715 hasConceptScore W2912060715C205372480 @default.
- W2912060715 hasConceptScore W2912060715C2524010 @default.
- W2912060715 hasConceptScore W2912060715C2776799497 @default.
- W2912060715 hasConceptScore W2912060715C31487907 @default.
- W2912060715 hasConceptScore W2912060715C31972630 @default.
- W2912060715 hasConceptScore W2912060715C33923547 @default.
- W2912060715 hasConceptScore W2912060715C41008148 @default.
- W2912060715 hasConceptScore W2912060715C54170458 @default.
- W2912060715 hasConceptScore W2912060715C81363708 @default.
- W2912060715 hasFunder F4320320924 @default.
- W2912060715 hasIssue "6" @default.
- W2912060715 hasLocation W29120607151 @default.
- W2912060715 hasLocation W29120607152 @default.
- W2912060715 hasOpenAccess W2912060715 @default.
- W2912060715 hasPrimaryLocation W29120607151 @default.