Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912071408> ?p ?o ?g. }
- W2912071408 endingPage "324" @default.
- W2912071408 startingPage "316" @default.
- W2912071408 abstract "Purpose We introduce a methodology to calculate the microdosimetric quantity dose-mean lineal energy for input into the microdosimetric kinetic model (MKM) to model the relative biological effectiveness (RBE) of proton irradiation experiments. Methods and Materials The data from 7 individual proton RBE experiments were included in this study. In each experiment, the RBE at several points along the Bragg curve was measured. Monte Carlo simulations to calculate the lineal energy probability density function of 172 different proton energies were carried out with use of Geant4 DNA. We calculated the fluence-weighted lineal energy probability density function ( f w ( y ) ) , based on the proton energy spectra calculated through Monte Carlo at each experimental depth, calculated the dose-mean lineal energy y D ¯ for input into the MKM, and then computed the RBE. The radius of the domain (rd) was varied to reach the best agreement between the MKM-predicted RBE and experimental RBE. A generic RBE model as a function of dose-averaged linear energy transfer (LETD) with 1 fitting parameter was presented and fit to the experimental RBE data as well to facilitate a comparison to the MKM. Results Both the MKM and LETD-based models modeled the RBE from experiments well. Values for rd were similar to those of other cell lines under proton irradiation that were modeled with the MKM. Analysis of the performance of each model revealed that neither model was clearly superior to the other. Conclusions Our 3 key accomplishments include the following: (1) We developed a method that uses the proton energy spectra and lineal energy distributions of those protons to calculate dose-mean lineal energy. (2) We demonstrated that our application of the MKM provides theoretical validation of proton irradiation experiments that show that RBE is significantly greater than 1.1. (3) We showed that there is no clear evidence that the MKM is better than LETD-based RBE models. We introduce a methodology to calculate the microdosimetric quantity dose-mean lineal energy for input into the microdosimetric kinetic model (MKM) to model the relative biological effectiveness (RBE) of proton irradiation experiments. The data from 7 individual proton RBE experiments were included in this study. In each experiment, the RBE at several points along the Bragg curve was measured. Monte Carlo simulations to calculate the lineal energy probability density function of 172 different proton energies were carried out with use of Geant4 DNA. We calculated the fluence-weighted lineal energy probability density function ( f w ( y ) ) , based on the proton energy spectra calculated through Monte Carlo at each experimental depth, calculated the dose-mean lineal energy y D ¯ for input into the MKM, and then computed the RBE. The radius of the domain (rd) was varied to reach the best agreement between the MKM-predicted RBE and experimental RBE. A generic RBE model as a function of dose-averaged linear energy transfer (LETD) with 1 fitting parameter was presented and fit to the experimental RBE data as well to facilitate a comparison to the MKM. Both the MKM and LETD-based models modeled the RBE from experiments well. Values for rd were similar to those of other cell lines under proton irradiation that were modeled with the MKM. Analysis of the performance of each model revealed that neither model was clearly superior to the other. Our 3 key accomplishments include the following: (1) We developed a method that uses the proton energy spectra and lineal energy distributions of those protons to calculate dose-mean lineal energy. (2) We demonstrated that our application of the MKM provides theoretical validation of proton irradiation experiments that show that RBE is significantly greater than 1.1. (3) We showed that there is no clear evidence that the MKM is better than LETD-based RBE models." @default.
- W2912071408 created "2019-02-21" @default.
- W2912071408 creator A5016070046 @default.
- W2912071408 creator A5031695487 @default.
- W2912071408 creator A5037177884 @default.
- W2912071408 creator A5037851639 @default.
- W2912071408 creator A5041943880 @default.
- W2912071408 creator A5052523510 @default.
- W2912071408 creator A5073535477 @default.
- W2912071408 creator A5076875343 @default.
- W2912071408 creator A5080511265 @default.
- W2912071408 creator A5087167680 @default.
- W2912071408 date "2019-06-01" @default.
- W2912071408 modified "2023-10-12" @default.
- W2912071408 title "Using the Proton Energy Spectrum and Microdosimetry to Model Proton Relative Biological Effectiveness" @default.
- W2912071408 cites W1968042369 @default.
- W2912071408 cites W1989632931 @default.
- W2912071408 cites W1992900869 @default.
- W2912071408 cites W2026812997 @default.
- W2912071408 cites W2036417164 @default.
- W2912071408 cites W2040145532 @default.
- W2912071408 cites W2081844303 @default.
- W2912071408 cites W2083079551 @default.
- W2912071408 cites W2083770395 @default.
- W2912071408 cites W2085852226 @default.
- W2912071408 cites W2091705392 @default.
- W2912071408 cites W2104358865 @default.
- W2912071408 cites W2123703108 @default.
- W2912071408 cites W2128158076 @default.
- W2912071408 cites W2133144211 @default.
- W2912071408 cites W2142635246 @default.
- W2912071408 cites W2189227215 @default.
- W2912071408 cites W2266637648 @default.
- W2912071408 cites W2287874371 @default.
- W2912071408 cites W2332394791 @default.
- W2912071408 cites W2521134478 @default.
- W2912071408 cites W2550452995 @default.
- W2912071408 cites W2603409019 @default.
- W2912071408 cites W2604998704 @default.
- W2912071408 cites W2734361030 @default.
- W2912071408 cites W2744371679 @default.
- W2912071408 cites W2745534020 @default.
- W2912071408 cites W2752585456 @default.
- W2912071408 cites W2755998648 @default.
- W2912071408 cites W2808184780 @default.
- W2912071408 cites W2891136014 @default.
- W2912071408 doi "https://doi.org/10.1016/j.ijrobp.2019.01.094" @default.
- W2912071408 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6499683" @default.
- W2912071408 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30731186" @default.
- W2912071408 hasPublicationYear "2019" @default.
- W2912071408 type Work @default.
- W2912071408 sameAs 2912071408 @default.
- W2912071408 citedByCount "26" @default.
- W2912071408 countsByYear W29120714082019 @default.
- W2912071408 countsByYear W29120714082020 @default.
- W2912071408 countsByYear W29120714082021 @default.
- W2912071408 countsByYear W29120714082022 @default.
- W2912071408 countsByYear W29120714082023 @default.
- W2912071408 crossrefType "journal-article" @default.
- W2912071408 hasAuthorship W2912071408A5016070046 @default.
- W2912071408 hasAuthorship W2912071408A5031695487 @default.
- W2912071408 hasAuthorship W2912071408A5037177884 @default.
- W2912071408 hasAuthorship W2912071408A5037851639 @default.
- W2912071408 hasAuthorship W2912071408A5041943880 @default.
- W2912071408 hasAuthorship W2912071408A5052523510 @default.
- W2912071408 hasAuthorship W2912071408A5073535477 @default.
- W2912071408 hasAuthorship W2912071408A5076875343 @default.
- W2912071408 hasAuthorship W2912071408A5080511265 @default.
- W2912071408 hasAuthorship W2912071408A5087167680 @default.
- W2912071408 hasBestOaLocation W29120714082 @default.
- W2912071408 hasConcept C105795698 @default.
- W2912071408 hasConcept C111337013 @default.
- W2912071408 hasConcept C11928243 @default.
- W2912071408 hasConcept C121332964 @default.
- W2912071408 hasConcept C178635117 @default.
- W2912071408 hasConcept C185544564 @default.
- W2912071408 hasConcept C186370098 @default.
- W2912071408 hasConcept C19499675 @default.
- W2912071408 hasConcept C22078206 @default.
- W2912071408 hasConcept C2779244869 @default.
- W2912071408 hasConcept C2780944729 @default.
- W2912071408 hasConcept C2989005 @default.
- W2912071408 hasConcept C30475298 @default.
- W2912071408 hasConcept C33923547 @default.
- W2912071408 hasConcept C38652104 @default.
- W2912071408 hasConcept C41008148 @default.
- W2912071408 hasConcept C54516573 @default.
- W2912071408 hasConcept C62520636 @default.
- W2912071408 hasConcept C71924100 @default.
- W2912071408 hasConcept C86611320 @default.
- W2912071408 hasConceptScore W2912071408C105795698 @default.
- W2912071408 hasConceptScore W2912071408C111337013 @default.
- W2912071408 hasConceptScore W2912071408C11928243 @default.
- W2912071408 hasConceptScore W2912071408C121332964 @default.
- W2912071408 hasConceptScore W2912071408C178635117 @default.
- W2912071408 hasConceptScore W2912071408C185544564 @default.
- W2912071408 hasConceptScore W2912071408C186370098 @default.
- W2912071408 hasConceptScore W2912071408C19499675 @default.