Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912083567> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2912083567 endingPage "22" @default.
- W2912083567 startingPage "12" @default.
- W2912083567 abstract "Abstract The versatility of artificial neural network with back propagation multilayer perceptron approach could entitle an easy and methodical interpretation of results corresponding to multiple metal oxides sensor in an electronic nose. Three algorithms discriminant factorial analysis (DFA), soft independent modeling by class analogy (SIMCA), probabilistic artificial neural network (PANN) with back propagation multilayer perceptron (BPNN) were used for the classification of R. dominica infested rice stored for 225 days via 18 metal oxide sensors in E-nose. The coefficient of correlation for the three approaches were 88 (DFA), 96 (SIMCA), 98.96 (BPNN) %, respectively. The percentage discrimination index was more distinct between 0 and 225 days R. dominica infested rice (98%) than 0–180 days (93%), and 0–135 days (88%). The residual errors of validation and cross validation for SIMCA were 1.04 × 10−3 and 1.26 × 10−3 respectively. Major metal oxide sensors responsible for the production of volatiles were P30/1, T 30/1, PA/2, P30/2, T70/2, P40/1, and P40/2. The overall relative errors during artificial neural network training and testing were 0.092 and 0.286 respectively. The artificial neural network relative error for scale dependents in response to metal oxide sensors for mean, SD, % RSD were 0.033, 0.162, 0.081, respectively. The applicability of E-nose with neural network could help in securing the data analysis time without loss of information and can also work well for noxious odors which might not be able to be categorized by human olfactory." @default.
- W2912083567 created "2019-02-21" @default.
- W2912083567 creator A5030131412 @default.
- W2912083567 creator A5032238624 @default.
- W2912083567 creator A5073804030 @default.
- W2912083567 date "2019-03-01" @default.
- W2912083567 modified "2023-10-13" @default.
- W2912083567 title "Probabilistic artificial neural network and E-nose based classification of Rhyzopertha dominica infestation in stored rice grains" @default.
- W2912083567 cites W1964151279 @default.
- W2912083567 cites W1964183908 @default.
- W2912083567 cites W1966242494 @default.
- W2912083567 cites W1968359891 @default.
- W2912083567 cites W1970632858 @default.
- W2912083567 cites W1980627576 @default.
- W2912083567 cites W1986690591 @default.
- W2912083567 cites W1992507160 @default.
- W2912083567 cites W1993877474 @default.
- W2912083567 cites W2017490097 @default.
- W2912083567 cites W2020984028 @default.
- W2912083567 cites W2032344041 @default.
- W2912083567 cites W2054341846 @default.
- W2912083567 cites W2055525282 @default.
- W2912083567 cites W2094946501 @default.
- W2912083567 cites W2143517703 @default.
- W2912083567 cites W2160004653 @default.
- W2912083567 cites W2624277422 @default.
- W2912083567 cites W2783536551 @default.
- W2912083567 cites W2809330976 @default.
- W2912083567 cites W2883252100 @default.
- W2912083567 cites W2910135719 @default.
- W2912083567 doi "https://doi.org/10.1016/j.chemolab.2019.01.007" @default.
- W2912083567 hasPublicationYear "2019" @default.
- W2912083567 type Work @default.
- W2912083567 sameAs 2912083567 @default.
- W2912083567 citedByCount "29" @default.
- W2912083567 countsByYear W29120835672019 @default.
- W2912083567 countsByYear W29120835672020 @default.
- W2912083567 countsByYear W29120835672021 @default.
- W2912083567 countsByYear W29120835672022 @default.
- W2912083567 countsByYear W29120835672023 @default.
- W2912083567 crossrefType "journal-article" @default.
- W2912083567 hasAuthorship W2912083567A5030131412 @default.
- W2912083567 hasAuthorship W2912083567A5032238624 @default.
- W2912083567 hasAuthorship W2912083567A5073804030 @default.
- W2912083567 hasConcept C153180895 @default.
- W2912083567 hasConcept C154945302 @default.
- W2912083567 hasConcept C23895516 @default.
- W2912083567 hasConcept C2776451879 @default.
- W2912083567 hasConcept C41008148 @default.
- W2912083567 hasConcept C50644808 @default.
- W2912083567 hasConcept C59822182 @default.
- W2912083567 hasConcept C86803240 @default.
- W2912083567 hasConceptScore W2912083567C153180895 @default.
- W2912083567 hasConceptScore W2912083567C154945302 @default.
- W2912083567 hasConceptScore W2912083567C23895516 @default.
- W2912083567 hasConceptScore W2912083567C2776451879 @default.
- W2912083567 hasConceptScore W2912083567C41008148 @default.
- W2912083567 hasConceptScore W2912083567C50644808 @default.
- W2912083567 hasConceptScore W2912083567C59822182 @default.
- W2912083567 hasConceptScore W2912083567C86803240 @default.
- W2912083567 hasFunder F4320322724 @default.
- W2912083567 hasLocation W29120835671 @default.
- W2912083567 hasOpenAccess W2912083567 @default.
- W2912083567 hasPrimaryLocation W29120835671 @default.
- W2912083567 hasRelatedWork W1974023169 @default.
- W2912083567 hasRelatedWork W1992271996 @default.
- W2912083567 hasRelatedWork W2274735967 @default.
- W2912083567 hasRelatedWork W2383065438 @default.
- W2912083567 hasRelatedWork W2386211617 @default.
- W2912083567 hasRelatedWork W2530636277 @default.
- W2912083567 hasRelatedWork W2782674249 @default.
- W2912083567 hasRelatedWork W2788730759 @default.
- W2912083567 hasRelatedWork W3006484328 @default.
- W2912083567 hasRelatedWork W2472423258 @default.
- W2912083567 hasVolume "186" @default.
- W2912083567 isParatext "false" @default.
- W2912083567 isRetracted "false" @default.
- W2912083567 magId "2912083567" @default.
- W2912083567 workType "article" @default.