Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912084594> ?p ?o ?g. }
- W2912084594 endingPage "828" @default.
- W2912084594 startingPage "822" @default.
- W2912084594 abstract "Purpose To determine the agreement of 6 established visual field (VF) progression algorithms in a large dataset of VFs from multiple institutions and to determine predictors of discordance among these algorithms. Design Retrospective longitudinal cohort study. Participants Visual fields from 5 major eye care institutions in the United States were analyzed, including a subset of eyes with at least 5 Swedish interactive threshold algorithm standard 24-2 VFs that met our reliability criteria. Of a total of 831 240 VFs, a subset of 90 713 VFs from 13 156 eyes of 8499 patients met the inclusion criteria. Methods Six commonly used VF progression algorithms (mean deviation [MD] slope, VF index slope, Advanced Glaucoma Intervention Study, Collaborative Initial Glaucoma Treatment Study, pointwise linear regression, and permutation of pointwise linear regression) were applied to this cohort, and each eye was determined to be stable or progressing using each measure. Agreement between individual algorithms was tested using Cohen’s κ coefficient. Bivariate and multivariate analyses were used to determine predictors of discordance (3 algorithms progressing and 3 algorithms stable). Main Outcome Measures Agreement and discordance between algorithms. Results Individual algorithms showed poor to moderate agreement with each other when compared directly (κ range, 0.12–0.52). Based on at least 4 algorithms, 11.7% of eyes progressed. Major predictors of discordance or lack of agreement among algorithms were more depressed initial MD (P < 0.01) and older age at first available VF (P < 0.01). A greater number of VFs (P < 0.01), more years of follow-up (P < 0.01), and eye care institution (P = 0.03) also were associated with discordance. Conclusions This extremely large comparative series demonstrated that existing algorithms have limited agreement and that agreement varies with clinical parameters, including institution. These issues underscore the challenges to the clinical use and application of progression algorithms and of applying big-data results to individual practices. To determine the agreement of 6 established visual field (VF) progression algorithms in a large dataset of VFs from multiple institutions and to determine predictors of discordance among these algorithms. Retrospective longitudinal cohort study. Visual fields from 5 major eye care institutions in the United States were analyzed, including a subset of eyes with at least 5 Swedish interactive threshold algorithm standard 24-2 VFs that met our reliability criteria. Of a total of 831 240 VFs, a subset of 90 713 VFs from 13 156 eyes of 8499 patients met the inclusion criteria. Six commonly used VF progression algorithms (mean deviation [MD] slope, VF index slope, Advanced Glaucoma Intervention Study, Collaborative Initial Glaucoma Treatment Study, pointwise linear regression, and permutation of pointwise linear regression) were applied to this cohort, and each eye was determined to be stable or progressing using each measure. Agreement between individual algorithms was tested using Cohen’s κ coefficient. Bivariate and multivariate analyses were used to determine predictors of discordance (3 algorithms progressing and 3 algorithms stable). Agreement and discordance between algorithms. Individual algorithms showed poor to moderate agreement with each other when compared directly (κ range, 0.12–0.52). Based on at least 4 algorithms, 11.7% of eyes progressed. Major predictors of discordance or lack of agreement among algorithms were more depressed initial MD (P < 0.01) and older age at first available VF (P < 0.01). A greater number of VFs (P < 0.01), more years of follow-up (P < 0.01), and eye care institution (P = 0.03) also were associated with discordance. This extremely large comparative series demonstrated that existing algorithms have limited agreement and that agreement varies with clinical parameters, including institution. These issues underscore the challenges to the clinical use and application of progression algorithms and of applying big-data results to individual practices." @default.
- W2912084594 created "2019-02-21" @default.
- W2912084594 creator A5010480125 @default.
- W2912084594 creator A5011529236 @default.
- W2912084594 creator A5032325357 @default.
- W2912084594 creator A5034761457 @default.
- W2912084594 creator A5047341378 @default.
- W2912084594 creator A5048125921 @default.
- W2912084594 creator A5056039431 @default.
- W2912084594 creator A5059589308 @default.
- W2912084594 creator A5060466667 @default.
- W2912084594 creator A5062453784 @default.
- W2912084594 creator A5072881907 @default.
- W2912084594 creator A5084071114 @default.
- W2912084594 creator A5085400880 @default.
- W2912084594 creator A5089968723 @default.
- W2912084594 date "2019-06-01" @default.
- W2912084594 modified "2023-10-07" @default.
- W2912084594 title "Agreement and Predictors of Discordance of 6 Visual Field Progression Algorithms" @default.
- W2912084594 cites W1518742755 @default.
- W2912084594 cites W1981504117 @default.
- W2912084594 cites W1985531175 @default.
- W2912084594 cites W2026209674 @default.
- W2912084594 cites W2028638788 @default.
- W2912084594 cites W2029059557 @default.
- W2912084594 cites W2029127061 @default.
- W2912084594 cites W2033510233 @default.
- W2912084594 cites W2047126828 @default.
- W2912084594 cites W2076607003 @default.
- W2912084594 cites W2087462702 @default.
- W2912084594 cites W2090432035 @default.
- W2912084594 cites W2148890166 @default.
- W2912084594 cites W2149352344 @default.
- W2912084594 cites W2154636025 @default.
- W2912084594 cites W2605864906 @default.
- W2912084594 cites W2627019718 @default.
- W2912084594 cites W2734698367 @default.
- W2912084594 cites W2751959469 @default.
- W2912084594 cites W2766149402 @default.
- W2912084594 cites W2770960212 @default.
- W2912084594 cites W2789894922 @default.
- W2912084594 cites W2807179733 @default.
- W2912084594 cites W4242563711 @default.
- W2912084594 cites W4298123400 @default.
- W2912084594 doi "https://doi.org/10.1016/j.ophtha.2019.01.029" @default.
- W2912084594 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7260059" @default.
- W2912084594 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30731101" @default.
- W2912084594 hasPublicationYear "2019" @default.
- W2912084594 type Work @default.
- W2912084594 sameAs 2912084594 @default.
- W2912084594 citedByCount "25" @default.
- W2912084594 countsByYear W29120845942019 @default.
- W2912084594 countsByYear W29120845942020 @default.
- W2912084594 countsByYear W29120845942021 @default.
- W2912084594 countsByYear W29120845942022 @default.
- W2912084594 countsByYear W29120845942023 @default.
- W2912084594 crossrefType "journal-article" @default.
- W2912084594 hasAuthorship W2912084594A5010480125 @default.
- W2912084594 hasAuthorship W2912084594A5011529236 @default.
- W2912084594 hasAuthorship W2912084594A5032325357 @default.
- W2912084594 hasAuthorship W2912084594A5034761457 @default.
- W2912084594 hasAuthorship W2912084594A5047341378 @default.
- W2912084594 hasAuthorship W2912084594A5048125921 @default.
- W2912084594 hasAuthorship W2912084594A5056039431 @default.
- W2912084594 hasAuthorship W2912084594A5059589308 @default.
- W2912084594 hasAuthorship W2912084594A5060466667 @default.
- W2912084594 hasAuthorship W2912084594A5062453784 @default.
- W2912084594 hasAuthorship W2912084594A5072881907 @default.
- W2912084594 hasAuthorship W2912084594A5084071114 @default.
- W2912084594 hasAuthorship W2912084594A5085400880 @default.
- W2912084594 hasAuthorship W2912084594A5089968723 @default.
- W2912084594 hasBestOaLocation W29120845942 @default.
- W2912084594 hasConcept C105795698 @default.
- W2912084594 hasConcept C11413529 @default.
- W2912084594 hasConcept C118487528 @default.
- W2912084594 hasConcept C126322002 @default.
- W2912084594 hasConcept C134306372 @default.
- W2912084594 hasConcept C141071460 @default.
- W2912084594 hasConcept C154945302 @default.
- W2912084594 hasConcept C167135981 @default.
- W2912084594 hasConcept C2776058522 @default.
- W2912084594 hasConcept C2777984123 @default.
- W2912084594 hasConcept C2778527774 @default.
- W2912084594 hasConcept C33923547 @default.
- W2912084594 hasConcept C41008148 @default.
- W2912084594 hasConcept C71924100 @default.
- W2912084594 hasConcept C72563966 @default.
- W2912084594 hasConceptScore W2912084594C105795698 @default.
- W2912084594 hasConceptScore W2912084594C11413529 @default.
- W2912084594 hasConceptScore W2912084594C118487528 @default.
- W2912084594 hasConceptScore W2912084594C126322002 @default.
- W2912084594 hasConceptScore W2912084594C134306372 @default.
- W2912084594 hasConceptScore W2912084594C141071460 @default.
- W2912084594 hasConceptScore W2912084594C154945302 @default.
- W2912084594 hasConceptScore W2912084594C167135981 @default.
- W2912084594 hasConceptScore W2912084594C2776058522 @default.
- W2912084594 hasConceptScore W2912084594C2777984123 @default.
- W2912084594 hasConceptScore W2912084594C2778527774 @default.