Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912086056> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2912086056 abstract "In the last decade, data mining has emerged as one of the most vivacious areas in information technology. Classic data mining is heavily dependent on data itself and targets data-driven methodologies. Existing approaches either view data mining as an autonomous data-driven trial-and-error process, or analyze the business issues in an isolated and case-by-case manner. As a result, very often the knowledge discovered is not always generally targeted to real business needs.Real-world data mining should consider and involve the following factors in data mining: the domain expert's role, domain intelligence, network/web intelligence, in-depth data intelligence, and the constrained environments in practice. It is greatly expected by business users that the identified data mining results can be directly deployed to assist business decision making and to improve business processes. However, as pointed out by KDD panels, they are some grand challenges for the next-generation KDD. It is very challenging to involve them for actionable knowledge discovery and mining real-world domain problems. Domain Driven Data Mining aims to tackle such challenges.The 2007 ACM SIGKDD International Workshop on Domain Driven Data Mining (DDDM2007) has provided a premier forum for sharing findings, knowledge, insight, experience and lessons in tackling potential challenges(1) to expose next-generation data mining methodology for actionable knowledge discovery, identifying how KDD techniques can better contribute to critical domain problems in theory and practice;(2) to uncover domain-driven data mining techniques identifying how KDD can better strengthen business intelligence in complex enterprise applications;(3) to disclose the applications of domain driven data mining identifying how KDD can be effectively deployed into solving complex practical problems; and(4) to identify challenges and directions for future research and development in the dialogue between academia and business.The DDDM2007 has competitively selected 8 papers including 5 regular papers and 3 short papers from 5 countries. These papers have addressed specific domain problems in social security, blog, business, healthcare, crime and finance as well as theoretical issues.We hope the above efforts can promote the research and development of discovering actionable knowledge from complex domain problems, enhancing interaction and reducing the gap between academia and business, and driving a paradigm shift from interesting hidden pattern mining to actionable knowledge discovery in varying data mining domains.The DDDM2007 is organized by the Faculty of Information Technology at the University of Technology, Sydney, Australia. In accompanying the DDDM2007, a special Trends & Controversies Department in IEEE Intelligent Systems magazine (Volume 22, No. 4 in 2007) has been successfully published." @default.
- W2912086056 created "2019-02-21" @default.
- W2912086056 creator A5002457406 @default.
- W2912086056 date "2007-08-12" @default.
- W2912086056 modified "2023-09-26" @default.
- W2912086056 title "Proceedings of the 2007 international workshop on Domain driven data mining" @default.
- W2912086056 hasPublicationYear "2007" @default.
- W2912086056 type Work @default.
- W2912086056 sameAs 2912086056 @default.
- W2912086056 citedByCount "1" @default.
- W2912086056 crossrefType "proceedings-article" @default.
- W2912086056 hasAuthorship W2912086056A5002457406 @default.
- W2912086056 hasConcept C105002631 @default.
- W2912086056 hasConcept C111919701 @default.
- W2912086056 hasConcept C120567893 @default.
- W2912086056 hasConcept C124101348 @default.
- W2912086056 hasConcept C127413603 @default.
- W2912086056 hasConcept C134306372 @default.
- W2912086056 hasConcept C136764020 @default.
- W2912086056 hasConcept C154945302 @default.
- W2912086056 hasConcept C174998907 @default.
- W2912086056 hasConcept C197046077 @default.
- W2912086056 hasConcept C207505557 @default.
- W2912086056 hasConcept C207685749 @default.
- W2912086056 hasConcept C21547014 @default.
- W2912086056 hasConcept C2522767166 @default.
- W2912086056 hasConcept C2767350 @default.
- W2912086056 hasConcept C33923547 @default.
- W2912086056 hasConcept C35578498 @default.
- W2912086056 hasConcept C36503486 @default.
- W2912086056 hasConcept C41008148 @default.
- W2912086056 hasConcept C56739046 @default.
- W2912086056 hasConcept C58328972 @default.
- W2912086056 hasConcept C75684735 @default.
- W2912086056 hasConcept C85345410 @default.
- W2912086056 hasConcept C93453677 @default.
- W2912086056 hasConcept C98045186 @default.
- W2912086056 hasConceptScore W2912086056C105002631 @default.
- W2912086056 hasConceptScore W2912086056C111919701 @default.
- W2912086056 hasConceptScore W2912086056C120567893 @default.
- W2912086056 hasConceptScore W2912086056C124101348 @default.
- W2912086056 hasConceptScore W2912086056C127413603 @default.
- W2912086056 hasConceptScore W2912086056C134306372 @default.
- W2912086056 hasConceptScore W2912086056C136764020 @default.
- W2912086056 hasConceptScore W2912086056C154945302 @default.
- W2912086056 hasConceptScore W2912086056C174998907 @default.
- W2912086056 hasConceptScore W2912086056C197046077 @default.
- W2912086056 hasConceptScore W2912086056C207505557 @default.
- W2912086056 hasConceptScore W2912086056C207685749 @default.
- W2912086056 hasConceptScore W2912086056C21547014 @default.
- W2912086056 hasConceptScore W2912086056C2522767166 @default.
- W2912086056 hasConceptScore W2912086056C2767350 @default.
- W2912086056 hasConceptScore W2912086056C33923547 @default.
- W2912086056 hasConceptScore W2912086056C35578498 @default.
- W2912086056 hasConceptScore W2912086056C36503486 @default.
- W2912086056 hasConceptScore W2912086056C41008148 @default.
- W2912086056 hasConceptScore W2912086056C56739046 @default.
- W2912086056 hasConceptScore W2912086056C58328972 @default.
- W2912086056 hasConceptScore W2912086056C75684735 @default.
- W2912086056 hasConceptScore W2912086056C85345410 @default.
- W2912086056 hasConceptScore W2912086056C93453677 @default.
- W2912086056 hasConceptScore W2912086056C98045186 @default.
- W2912086056 hasLocation W29120860561 @default.
- W2912086056 hasOpenAccess W2912086056 @default.
- W2912086056 hasPrimaryLocation W29120860561 @default.
- W2912086056 hasRelatedWork W1491417981 @default.
- W2912086056 hasRelatedWork W1498798873 @default.
- W2912086056 hasRelatedWork W1556955258 @default.
- W2912086056 hasRelatedWork W1557025445 @default.
- W2912086056 hasRelatedWork W2050841963 @default.
- W2912086056 hasRelatedWork W2076322640 @default.
- W2912086056 hasRelatedWork W2106541455 @default.
- W2912086056 hasRelatedWork W2154225983 @default.
- W2912086056 hasRelatedWork W2273355526 @default.
- W2912086056 hasRelatedWork W2273800642 @default.
- W2912086056 hasRelatedWork W2290966656 @default.
- W2912086056 hasRelatedWork W233282767 @default.
- W2912086056 hasRelatedWork W2359952336 @default.
- W2912086056 hasRelatedWork W2607184054 @default.
- W2912086056 hasRelatedWork W2618495584 @default.
- W2912086056 hasRelatedWork W2805021418 @default.
- W2912086056 hasRelatedWork W2913893210 @default.
- W2912086056 hasRelatedWork W394802808 @default.
- W2912086056 hasRelatedWork W595578687 @default.
- W2912086056 hasRelatedWork W648471592 @default.
- W2912086056 isParatext "false" @default.
- W2912086056 isRetracted "false" @default.
- W2912086056 magId "2912086056" @default.
- W2912086056 workType "article" @default.