Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912094291> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2912094291 abstract "Abstract Active machine learning is a human-centric paradigm that leverages a small labelled dataset to build an initial weak classifier, that can then be improved over time through human-machine collaboration. As new unlabelled samples are observed, the machine can either provide a prediction, or query a human ‘oracle’ when the machine is not confident in its prediction. Of course, just as the machine may lack confidence, the same can also be true of a human ‘oracle’: humans are not all-knowing, untiring oracles. A human’s ability to provide an accurate and confident response will often vary between queries, according to the duration of the current interaction, their level of engagement with the system, and the difficulty of the labelling task. This poses an important question of how uncertainty can be expressed and accounted for in a human-machine collaboration. In short, how can we facilitate a mutually-transparent collaboration between two uncertain actors—a person and a machine—that leads to an improved outcome? In this work, we demonstrate the benefit of human-machine collaboration within the process of active learning, where limited data samples are available or where labelling costs are high. To achieve this, we developed a visual analytics tool for active learning that promotes transparency, inspection, understanding and trust, of the learning process through human-machine collaboration. Fundamental to the notion of confidence, both parties can report their level of confidence during active learning tasks using the tool, such that this can be used to inform learning. Human confidence of labels can be accounted for by the machine, the machine can query for samples based on confidence measures, and the machine can report confidence of current predictions to the human, to further the trust and transparency between the collaborative parties. In particular, we find that this can improve the robustness of the classifier when incorrect sample labels are provided, due to unconfidence or fatigue. Reported confidences can also better inform human-machine sample selection in collaborative sampling. Our experimentation compares the impact of different selection strategies for acquiring samples: machine-driven, human-driven, and collaborative selection. We demonstrate how a collaborative approach can improve trust in the model robustness, achieving high accuracy and low user correction, with only limited data sample selections." @default.
- W2912094291 created "2019-02-21" @default.
- W2912094291 creator A5021142453 @default.
- W2912094291 creator A5053235466 @default.
- W2912094291 creator A5064363629 @default.
- W2912094291 date "2019-02-14" @default.
- W2912094291 modified "2023-09-24" @default.
- W2912094291 title "Visual analytics for collaborative human-machine confidence in human-centric active learning tasks" @default.
- W2912094291 cites W1501005121 @default.
- W2912094291 cites W1859925930 @default.
- W2912094291 cites W1910002509 @default.
- W2912094291 cites W1966373265 @default.
- W2912094291 cites W1980301091 @default.
- W2912094291 cites W2014050279 @default.
- W2912094291 cites W2067760738 @default.
- W2912094291 cites W2071627598 @default.
- W2912094291 cites W2072770403 @default.
- W2912094291 cites W2080430588 @default.
- W2912094291 cites W2094834818 @default.
- W2912094291 cites W2121096237 @default.
- W2912094291 cites W2121110499 @default.
- W2912094291 cites W2128718601 @default.
- W2912094291 cites W2151019861 @default.
- W2912094291 cites W2394669110 @default.
- W2912094291 cites W2512274390 @default.
- W2912094291 cites W2517066960 @default.
- W2912094291 cites W2579642215 @default.
- W2912094291 cites W2587299461 @default.
- W2912094291 cites W2593890499 @default.
- W2912094291 cites W2607223307 @default.
- W2912094291 cites W2751746637 @default.
- W2912094291 cites W2752332392 @default.
- W2912094291 cites W2753079413 @default.
- W2912094291 cites W2787116251 @default.
- W2912094291 cites W2792641098 @default.
- W2912094291 cites W2807661964 @default.
- W2912094291 cites W2889326414 @default.
- W2912094291 cites W3124418332 @default.
- W2912094291 cites W4206723194 @default.
- W2912094291 doi "https://doi.org/10.1186/s13673-019-0167-8" @default.
- W2912094291 hasPublicationYear "2019" @default.
- W2912094291 type Work @default.
- W2912094291 sameAs 2912094291 @default.
- W2912094291 citedByCount "10" @default.
- W2912094291 countsByYear W29120942912019 @default.
- W2912094291 countsByYear W29120942912020 @default.
- W2912094291 countsByYear W29120942912021 @default.
- W2912094291 countsByYear W29120942912022 @default.
- W2912094291 crossrefType "journal-article" @default.
- W2912094291 hasAuthorship W2912094291A5021142453 @default.
- W2912094291 hasAuthorship W2912094291A5053235466 @default.
- W2912094291 hasAuthorship W2912094291A5064363629 @default.
- W2912094291 hasBestOaLocation W29120942911 @default.
- W2912094291 hasConcept C107457646 @default.
- W2912094291 hasConcept C115903868 @default.
- W2912094291 hasConcept C119857082 @default.
- W2912094291 hasConcept C146047270 @default.
- W2912094291 hasConcept C154945302 @default.
- W2912094291 hasConcept C2522767166 @default.
- W2912094291 hasConcept C2780233690 @default.
- W2912094291 hasConcept C38652104 @default.
- W2912094291 hasConcept C41008148 @default.
- W2912094291 hasConcept C55166926 @default.
- W2912094291 hasConcept C77967617 @default.
- W2912094291 hasConcept C79158427 @default.
- W2912094291 hasConcept C95623464 @default.
- W2912094291 hasConceptScore W2912094291C107457646 @default.
- W2912094291 hasConceptScore W2912094291C115903868 @default.
- W2912094291 hasConceptScore W2912094291C119857082 @default.
- W2912094291 hasConceptScore W2912094291C146047270 @default.
- W2912094291 hasConceptScore W2912094291C154945302 @default.
- W2912094291 hasConceptScore W2912094291C2522767166 @default.
- W2912094291 hasConceptScore W2912094291C2780233690 @default.
- W2912094291 hasConceptScore W2912094291C38652104 @default.
- W2912094291 hasConceptScore W2912094291C41008148 @default.
- W2912094291 hasConceptScore W2912094291C55166926 @default.
- W2912094291 hasConceptScore W2912094291C77967617 @default.
- W2912094291 hasConceptScore W2912094291C79158427 @default.
- W2912094291 hasConceptScore W2912094291C95623464 @default.
- W2912094291 hasFunder F4320332972 @default.
- W2912094291 hasIssue "1" @default.
- W2912094291 hasLocation W29120942911 @default.
- W2912094291 hasLocation W29120942912 @default.
- W2912094291 hasOpenAccess W2912094291 @default.
- W2912094291 hasPrimaryLocation W29120942911 @default.
- W2912094291 hasRelatedWork W189357660 @default.
- W2912094291 hasRelatedWork W2107003417 @default.
- W2912094291 hasRelatedWork W2294783263 @default.
- W2912094291 hasRelatedWork W2295628041 @default.
- W2912094291 hasRelatedWork W2474469336 @default.
- W2912094291 hasRelatedWork W2597787948 @default.
- W2912094291 hasRelatedWork W2623427976 @default.
- W2912094291 hasRelatedWork W2912094291 @default.
- W2912094291 hasRelatedWork W2961085424 @default.
- W2912094291 hasRelatedWork W3200179079 @default.
- W2912094291 hasVolume "9" @default.
- W2912094291 isParatext "false" @default.
- W2912094291 isRetracted "false" @default.
- W2912094291 magId "2912094291" @default.
- W2912094291 workType "article" @default.