Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912095303> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2912095303 endingPage "421" @default.
- W2912095303 startingPage "412" @default.
- W2912095303 abstract "Background: In recent time with the growth of the technology and the business model, customer attrition analysis is considered as a very important metric which decides the revenues and profitability of the organization. It is applicable for all the business domains irrespective of the size of the business even including the start-ups. Because about 65% revenue for the organization comes from the existing customer. The goal of the customer attrition analysis is to predict the customer who is likely to exit or churn from the current business organization. In this research work, the literature review is carried out to explore the related work which has been already carried out in the field of customer attrition analysis. The literature review also focuses on some of the patents which are issued in the area of customer attrition or churn analysis. The goal of the research paper is to predict accurately the customer attrition rate in the Banking Sector. Objective: The main objective of this paper is to predict accurately the attrition rate in the Banking sector using an optimized deep feed-forward neural network. Methods: In the proposed work the predictive machine learning model is implemented using the optimized deep feed-forward neural network having five hidden layers in it. The model is trained using Adam optimizer algorithm to obtain the optimal accuracy. The Banking Churn data set is passed as input to the Optimized Deep Feed Forward Neural Network Model. In order to perform the comparative analysis, the same data set is passed as input to the other machine learning algorithm such as Decision Tree, Logistic Regression, Gaussian Naïve Bayes, and Artificial Neural Network. Results: The test results indicate that the proposed optimized deep feedforward neural Network model performed better in accuracy compared to existing machine learning techniques. Conclusion: The proposed optimized deep neural network model is an accurate model for customer attrition analysis in the Banking sector compared to the existing machine learning techniques." @default.
- W2912095303 created "2019-02-21" @default.
- W2912095303 creator A5004376448 @default.
- W2912095303 creator A5029896296 @default.
- W2912095303 date "2021-01-19" @default.
- W2912095303 modified "2023-09-26" @default.
- W2912095303 title "Optimized Deep Neural Network Based Predictive Model for Customer Attrition Analysis in the Banking Sector" @default.
- W2912095303 cites W2512929571 @default.
- W2912095303 cites W2556000510 @default.
- W2912095303 cites W2614329462 @default.
- W2912095303 cites W2754253678 @default.
- W2912095303 cites W2780576732 @default.
- W2912095303 cites W2884904961 @default.
- W2912095303 cites W2914716244 @default.
- W2912095303 doi "https://doi.org/10.2174/1872212113666190211130117" @default.
- W2912095303 hasPublicationYear "2021" @default.
- W2912095303 type Work @default.
- W2912095303 sameAs 2912095303 @default.
- W2912095303 citedByCount "4" @default.
- W2912095303 countsByYear W29120953032021 @default.
- W2912095303 countsByYear W29120953032022 @default.
- W2912095303 countsByYear W29120953032023 @default.
- W2912095303 crossrefType "journal-article" @default.
- W2912095303 hasAuthorship W2912095303A5004376448 @default.
- W2912095303 hasAuthorship W2912095303A5029896296 @default.
- W2912095303 hasConcept C101276457 @default.
- W2912095303 hasConcept C10138342 @default.
- W2912095303 hasConcept C124101348 @default.
- W2912095303 hasConcept C127413603 @default.
- W2912095303 hasConcept C129361004 @default.
- W2912095303 hasConcept C13736549 @default.
- W2912095303 hasConcept C140781008 @default.
- W2912095303 hasConcept C144133560 @default.
- W2912095303 hasConcept C154945302 @default.
- W2912095303 hasConcept C162853370 @default.
- W2912095303 hasConcept C177264268 @default.
- W2912095303 hasConcept C195487862 @default.
- W2912095303 hasConcept C199343813 @default.
- W2912095303 hasConcept C199360897 @default.
- W2912095303 hasConcept C202444582 @default.
- W2912095303 hasConcept C2780378061 @default.
- W2912095303 hasConcept C2780553607 @default.
- W2912095303 hasConcept C33923547 @default.
- W2912095303 hasConcept C41008148 @default.
- W2912095303 hasConcept C4216890 @default.
- W2912095303 hasConcept C42475967 @default.
- W2912095303 hasConcept C43595421 @default.
- W2912095303 hasConcept C50644808 @default.
- W2912095303 hasConcept C57660159 @default.
- W2912095303 hasConcept C71924100 @default.
- W2912095303 hasConcept C9652623 @default.
- W2912095303 hasConceptScore W2912095303C101276457 @default.
- W2912095303 hasConceptScore W2912095303C10138342 @default.
- W2912095303 hasConceptScore W2912095303C124101348 @default.
- W2912095303 hasConceptScore W2912095303C127413603 @default.
- W2912095303 hasConceptScore W2912095303C129361004 @default.
- W2912095303 hasConceptScore W2912095303C13736549 @default.
- W2912095303 hasConceptScore W2912095303C140781008 @default.
- W2912095303 hasConceptScore W2912095303C144133560 @default.
- W2912095303 hasConceptScore W2912095303C154945302 @default.
- W2912095303 hasConceptScore W2912095303C162853370 @default.
- W2912095303 hasConceptScore W2912095303C177264268 @default.
- W2912095303 hasConceptScore W2912095303C195487862 @default.
- W2912095303 hasConceptScore W2912095303C199343813 @default.
- W2912095303 hasConceptScore W2912095303C199360897 @default.
- W2912095303 hasConceptScore W2912095303C202444582 @default.
- W2912095303 hasConceptScore W2912095303C2780378061 @default.
- W2912095303 hasConceptScore W2912095303C2780553607 @default.
- W2912095303 hasConceptScore W2912095303C33923547 @default.
- W2912095303 hasConceptScore W2912095303C41008148 @default.
- W2912095303 hasConceptScore W2912095303C4216890 @default.
- W2912095303 hasConceptScore W2912095303C42475967 @default.
- W2912095303 hasConceptScore W2912095303C43595421 @default.
- W2912095303 hasConceptScore W2912095303C50644808 @default.
- W2912095303 hasConceptScore W2912095303C57660159 @default.
- W2912095303 hasConceptScore W2912095303C71924100 @default.
- W2912095303 hasConceptScore W2912095303C9652623 @default.
- W2912095303 hasIssue "3" @default.
- W2912095303 hasLocation W29120953031 @default.
- W2912095303 hasOpenAccess W2912095303 @default.
- W2912095303 hasPrimaryLocation W29120953031 @default.
- W2912095303 hasRelatedWork W2116687175 @default.
- W2912095303 hasRelatedWork W2137030199 @default.
- W2912095303 hasRelatedWork W2595863434 @default.
- W2912095303 hasRelatedWork W2621991600 @default.
- W2912095303 hasRelatedWork W2979524047 @default.
- W2912095303 hasRelatedWork W30134697 @default.
- W2912095303 hasRelatedWork W3199248199 @default.
- W2912095303 hasRelatedWork W4214904831 @default.
- W2912095303 hasRelatedWork W4226205169 @default.
- W2912095303 hasRelatedWork W4328095742 @default.
- W2912095303 hasVolume "14" @default.
- W2912095303 isParatext "false" @default.
- W2912095303 isRetracted "false" @default.
- W2912095303 magId "2912095303" @default.
- W2912095303 workType "article" @default.