Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912096799> ?p ?o ?g. }
- W2912096799 endingPage "20" @default.
- W2912096799 startingPage "15" @default.
- W2912096799 abstract "Background Previous studies have suggested that breast parenchymal texture features may reflect the biologic risk factors associated with breast cancer development. Therefore, combining the characteristics of normal parenchyma from the contralateral breast with radiomic features of breast tumors may improve the accuracy of digital mammography in the diagnosis of breast cancer. Purpose To determine whether the addition of radiomic analysis of contralateral breast parenchyma to the characterization of breast lesions with digital mammography improves lesion classification over that with radiomic tumor features alone. Materials and Methods This HIPAA-compliant, retrospective study included 182 patients (age range, 25-90 years; mean age, 55.9 years ± 14.9) who underwent mammography between June 2002 and July 2009. There were 106 malignant and 76 benign lesions. Automatic lesion segmentation and radiomic analysis were performed for each breast lesion. Radiomic texture analysis was applied in the normal regions of interest in the contralateral breast parenchyma to assess the mammographic parenchymal patterns. The classification performance of both individual features and the output from a Bayesian artificial neural network classifier was evaluated with the leave-one-patient-out method by using the area under the receiver operating characteristic curve (AUC) as the figure of merit in the task of differentiating between malignant and benign lesions. Results The performance of the combined lesion and parenchyma classifier in the differentiation between malignant and benign mammographic lesions was better than that with the lesion features alone (AUC = 0.84 ± 0.03 vs 0.79 ± 0.03, respectively; P = .047). Overall, six radiomic features-spiculation, margin sharpness, size, circularity from the tumor feature set, and skewness and power law beta from the parenchymal feature set-were selected more than 50% of the time during the feature selection process on the combined feature set. Conclusion Combining quantitative radiomic data from tumors with contralateral parenchyma characterizations may improve diagnostic accuracy for breast cancer. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Shaffer in this issue." @default.
- W2912096799 created "2019-02-21" @default.
- W2912096799 creator A5017476303 @default.
- W2912096799 creator A5017524856 @default.
- W2912096799 creator A5034182089 @default.
- W2912096799 creator A5049042648 @default.
- W2912096799 creator A5071577735 @default.
- W2912096799 date "2019-04-01" @default.
- W2912096799 modified "2023-10-10" @default.
- W2912096799 title "Digital Mammography in Breast Cancer: Additive Value of Radiomics of Breast Parenchyma" @default.
- W2912096799 cites W1765183309 @default.
- W2912096799 cites W193615579 @default.
- W2912096799 cites W1977738564 @default.
- W2912096799 cites W1982981565 @default.
- W2912096799 cites W1992489994 @default.
- W2912096799 cites W1995388182 @default.
- W2912096799 cites W1996199765 @default.
- W2912096799 cites W2003894496 @default.
- W2912096799 cites W2004403900 @default.
- W2912096799 cites W2004840666 @default.
- W2912096799 cites W2004980192 @default.
- W2912096799 cites W2007402398 @default.
- W2912096799 cites W2016891892 @default.
- W2912096799 cites W2017352979 @default.
- W2912096799 cites W2018211174 @default.
- W2912096799 cites W2032389573 @default.
- W2912096799 cites W2032972527 @default.
- W2912096799 cites W2040842850 @default.
- W2912096799 cites W2054470248 @default.
- W2912096799 cites W2060185596 @default.
- W2912096799 cites W2061138960 @default.
- W2912096799 cites W2070543919 @default.
- W2912096799 cites W2072794239 @default.
- W2912096799 cites W2081824827 @default.
- W2912096799 cites W2089121733 @default.
- W2912096799 cites W2092068359 @default.
- W2912096799 cites W2099294562 @default.
- W2912096799 cites W2123874960 @default.
- W2912096799 cites W2133094542 @default.
- W2912096799 cites W2138309086 @default.
- W2912096799 cites W2144929691 @default.
- W2912096799 cites W2166395246 @default.
- W2912096799 cites W2521782317 @default.
- W2912096799 doi "https://doi.org/10.1148/radiol.2019181113" @default.
- W2912096799 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6445042" @default.
- W2912096799 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30747591" @default.
- W2912096799 hasPublicationYear "2019" @default.
- W2912096799 type Work @default.
- W2912096799 sameAs 2912096799 @default.
- W2912096799 citedByCount "61" @default.
- W2912096799 countsByYear W29120967992019 @default.
- W2912096799 countsByYear W29120967992020 @default.
- W2912096799 countsByYear W29120967992021 @default.
- W2912096799 countsByYear W29120967992022 @default.
- W2912096799 countsByYear W29120967992023 @default.
- W2912096799 crossrefType "journal-article" @default.
- W2912096799 hasAuthorship W2912096799A5017476303 @default.
- W2912096799 hasAuthorship W2912096799A5017524856 @default.
- W2912096799 hasAuthorship W2912096799A5034182089 @default.
- W2912096799 hasAuthorship W2912096799A5049042648 @default.
- W2912096799 hasAuthorship W2912096799A5071577735 @default.
- W2912096799 hasBestOaLocation W29120967991 @default.
- W2912096799 hasConcept C121608353 @default.
- W2912096799 hasConcept C126322002 @default.
- W2912096799 hasConcept C126838900 @default.
- W2912096799 hasConcept C142724271 @default.
- W2912096799 hasConcept C143409427 @default.
- W2912096799 hasConcept C196822366 @default.
- W2912096799 hasConcept C2777111374 @default.
- W2912096799 hasConcept C2779098232 @default.
- W2912096799 hasConcept C2780472235 @default.
- W2912096799 hasConcept C2781156865 @default.
- W2912096799 hasConcept C2781281974 @default.
- W2912096799 hasConcept C530470458 @default.
- W2912096799 hasConcept C58471807 @default.
- W2912096799 hasConcept C71924100 @default.
- W2912096799 hasConceptScore W2912096799C121608353 @default.
- W2912096799 hasConceptScore W2912096799C126322002 @default.
- W2912096799 hasConceptScore W2912096799C126838900 @default.
- W2912096799 hasConceptScore W2912096799C142724271 @default.
- W2912096799 hasConceptScore W2912096799C143409427 @default.
- W2912096799 hasConceptScore W2912096799C196822366 @default.
- W2912096799 hasConceptScore W2912096799C2777111374 @default.
- W2912096799 hasConceptScore W2912096799C2779098232 @default.
- W2912096799 hasConceptScore W2912096799C2780472235 @default.
- W2912096799 hasConceptScore W2912096799C2781156865 @default.
- W2912096799 hasConceptScore W2912096799C2781281974 @default.
- W2912096799 hasConceptScore W2912096799C530470458 @default.
- W2912096799 hasConceptScore W2912096799C58471807 @default.
- W2912096799 hasConceptScore W2912096799C71924100 @default.
- W2912096799 hasFunder F4320332161 @default.
- W2912096799 hasIssue "1" @default.
- W2912096799 hasLocation W29120967991 @default.
- W2912096799 hasLocation W29120967992 @default.
- W2912096799 hasLocation W29120967993 @default.
- W2912096799 hasLocation W29120967994 @default.
- W2912096799 hasOpenAccess W2912096799 @default.
- W2912096799 hasPrimaryLocation W29120967991 @default.