Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912097295> ?p ?o ?g. }
- W2912097295 endingPage "18" @default.
- W2912097295 startingPage "1" @default.
- W2912097295 abstract "This paper focuses on solving the quadratic programming problems with second-order cone constraints (SOCQP) and the second-order cone constrained variational inequality (SOCCVI) by using the neural network. More specifically, a neural network model based on two discrete-type families of SOC complementarity functions associated with second-order cone is proposed to deal with the Karush-Kuhn-Tucker (KKT) conditions of SOCQP and SOCCVI. The two discrete-type SOC complementarity functions are newly explored. The neural network uses the two discrete-type families of SOC complementarity functions to achieve two unconstrained minimizations which are the merit functions of the Karuch-Kuhn-Tucker equations for SOCQP and SOCCVI. We show that the merit functions for SOCQP and SOCCVI are Lyapunov functions and this neural network is asymptotically stable. The main contribution of this paper lies on its simulation part because we observe a different numerical performance from the existing one. In other words, for our two target problems, more effective SOC complementarity functions, which work well along with the proposed neural network, are discovered." @default.
- W2912097295 created "2019-02-21" @default.
- W2912097295 creator A5012534079 @default.
- W2912097295 creator A5022426724 @default.
- W2912097295 creator A5035107467 @default.
- W2912097295 creator A5046911705 @default.
- W2912097295 creator A5061633817 @default.
- W2912097295 date "2019-02-14" @default.
- W2912097295 modified "2023-10-17" @default.
- W2912097295 title "Neural Network for Solving SOCQP and SOCCVI Based on Two Discrete-Type Classes of SOC Complementarity Functions" @default.
- W2912097295 cites W1551386895 @default.
- W2912097295 cites W1597286183 @default.
- W2912097295 cites W1965289538 @default.
- W2912097295 cites W1965717960 @default.
- W2912097295 cites W1967759264 @default.
- W2912097295 cites W1972573855 @default.
- W2912097295 cites W1973281249 @default.
- W2912097295 cites W1988557613 @default.
- W2912097295 cites W1990799441 @default.
- W2912097295 cites W2016187009 @default.
- W2912097295 cites W2019584702 @default.
- W2912097295 cites W2021720399 @default.
- W2912097295 cites W2045632163 @default.
- W2912097295 cites W2055390480 @default.
- W2912097295 cites W2068807208 @default.
- W2912097295 cites W2083128450 @default.
- W2912097295 cites W2091968661 @default.
- W2912097295 cites W2097113878 @default.
- W2912097295 cites W2099016540 @default.
- W2912097295 cites W2102227134 @default.
- W2912097295 cites W2116748247 @default.
- W2912097295 cites W2117163577 @default.
- W2912097295 cites W2118204568 @default.
- W2912097295 cites W2133971328 @default.
- W2912097295 cites W2134045771 @default.
- W2912097295 cites W2135728877 @default.
- W2912097295 cites W2145356049 @default.
- W2912097295 cites W2150468523 @default.
- W2912097295 cites W2150872461 @default.
- W2912097295 cites W2156521550 @default.
- W2912097295 cites W2156737647 @default.
- W2912097295 cites W2170161701 @default.
- W2912097295 cites W2242049308 @default.
- W2912097295 cites W2293327988 @default.
- W2912097295 cites W2563707434 @default.
- W2912097295 cites W2797476900 @default.
- W2912097295 cites W2807303275 @default.
- W2912097295 doi "https://doi.org/10.1155/2019/4545064" @default.
- W2912097295 hasPublicationYear "2019" @default.
- W2912097295 type Work @default.
- W2912097295 sameAs 2912097295 @default.
- W2912097295 citedByCount "2" @default.
- W2912097295 countsByYear W29120972952020 @default.
- W2912097295 countsByYear W29120972952021 @default.
- W2912097295 crossrefType "journal-article" @default.
- W2912097295 hasAuthorship W2912097295A5012534079 @default.
- W2912097295 hasAuthorship W2912097295A5022426724 @default.
- W2912097295 hasAuthorship W2912097295A5035107467 @default.
- W2912097295 hasAuthorship W2912097295A5046911705 @default.
- W2912097295 hasAuthorship W2912097295A5061633817 @default.
- W2912097295 hasBestOaLocation W29120972951 @default.
- W2912097295 hasConcept C121332964 @default.
- W2912097295 hasConcept C126255220 @default.
- W2912097295 hasConcept C129844170 @default.
- W2912097295 hasConcept C154945302 @default.
- W2912097295 hasConcept C158622935 @default.
- W2912097295 hasConcept C18903297 @default.
- W2912097295 hasConcept C202269582 @default.
- W2912097295 hasConcept C2524010 @default.
- W2912097295 hasConcept C2777299769 @default.
- W2912097295 hasConcept C2778646529 @default.
- W2912097295 hasConcept C28826006 @default.
- W2912097295 hasConcept C33923547 @default.
- W2912097295 hasConcept C41008148 @default.
- W2912097295 hasConcept C50454189 @default.
- W2912097295 hasConcept C50644808 @default.
- W2912097295 hasConcept C54355233 @default.
- W2912097295 hasConcept C60640748 @default.
- W2912097295 hasConcept C62520636 @default.
- W2912097295 hasConcept C81845259 @default.
- W2912097295 hasConcept C85404239 @default.
- W2912097295 hasConcept C86803240 @default.
- W2912097295 hasConceptScore W2912097295C121332964 @default.
- W2912097295 hasConceptScore W2912097295C126255220 @default.
- W2912097295 hasConceptScore W2912097295C129844170 @default.
- W2912097295 hasConceptScore W2912097295C154945302 @default.
- W2912097295 hasConceptScore W2912097295C158622935 @default.
- W2912097295 hasConceptScore W2912097295C18903297 @default.
- W2912097295 hasConceptScore W2912097295C202269582 @default.
- W2912097295 hasConceptScore W2912097295C2524010 @default.
- W2912097295 hasConceptScore W2912097295C2777299769 @default.
- W2912097295 hasConceptScore W2912097295C2778646529 @default.
- W2912097295 hasConceptScore W2912097295C28826006 @default.
- W2912097295 hasConceptScore W2912097295C33923547 @default.
- W2912097295 hasConceptScore W2912097295C41008148 @default.
- W2912097295 hasConceptScore W2912097295C50454189 @default.
- W2912097295 hasConceptScore W2912097295C50644808 @default.
- W2912097295 hasConceptScore W2912097295C54355233 @default.