Matches in SemOpenAlex for { <https://semopenalex.org/work/W2912103742> ?p ?o ?g. }
- W2912103742 endingPage "60" @default.
- W2912103742 startingPage "41" @default.
- W2912103742 abstract "Abstract. Studies that have used hydrological tracers to investigate the fate and transport of pesticides in constructed wetlands have often considered such systems as a “black box”. Consequently, internal temporal and spatial mechanisms that dominate pesticide transport and dissipation (e.g., sorption, transformation and plant uptake) are still not fully understood. Here we present a novel approach that combines the use of tracers with different sorptive and reactive properties – i.e., bromide (Br−), uranine (UR) and sulforhodamine B (SRB) – with high vertical resolution sampling and monitoring to evaluate transport and dissipation processes of three selected pesticides (boscalid, penconazole and metazachlor) inside a model constructed wetland system on a long-term basis and detailed spatial scale. Moreover, the influence of vegetation and alternating different hydrologic conditions on transport and dissipation processes was evaluated by comparing a vegetated with a non-vegetated section and by alternating periods of saturation and drying. Breakthrough curves obtained at different sampling depths pointed out that the solutes were not equally distributed within the constructed wetland. Data revealed that a higher mass of solutes was transported to the vegetated part of the uppermost layer, which was associated with possible lateral transport at or near the surface and/or a shortcut effect produced by the roots. In contrast, the middle layers showed retardation, most likely due to the presence of water-filled pores before the injections and low pore connectivity in the vicinity of the sampling ports. The strong temporal and spatial correlation found between Br−, UR and metazachlor indicated that transport was the dominant process for these solutes. Conversely, SRB, boscalid and penconazole most likely underwent sorption, as evidenced by their absence in the middle layers, the rapid decrease in their concentrations after the injections and the gradual increase in accumulated mass recovery at the outlet. The overall tracer mass balance allowed us to identify three dissipation pathways: sorption, transformation and plant uptake. The detection of metazachlor transformation products (TPs) confirmed the contribution of transformation to metazachlor dissipation, whereas no TPs for boscalid and penconazole were detected; however, their transformation could not be ruled out in the present study. Hot spots of sorption and transformation were found in the uppermost layer, whereas hot moments were detected at the beginning of the experiment for sorption and after promoting aerated conditions for transformation. The use of hydrological tracers coupled with high vertical resolution sampling and monitoring proved to provide valuable information about the transport vectors and dissipation processes of pesticides inside a constructed wetland. This study represents a first approximation, and further experiments need to be carried under field conditions in combination with modeling." @default.
- W2912103742 created "2019-02-21" @default.
- W2912103742 creator A5000996765 @default.
- W2912103742 creator A5040527420 @default.
- W2912103742 creator A5074771553 @default.
- W2912103742 creator A5077752643 @default.
- W2912103742 date "2020-01-08" @default.
- W2912103742 modified "2023-10-18" @default.
- W2912103742 title "Hydrological tracers for assessing transport and dissipation processes of pesticides in a model constructed wetland system" @default.
- W2912103742 cites W1169028933 @default.
- W2912103742 cites W1597654657 @default.
- W2912103742 cites W1964542933 @default.
- W2912103742 cites W1968181247 @default.
- W2912103742 cites W1972785675 @default.
- W2912103742 cites W1976754398 @default.
- W2912103742 cites W197740468 @default.
- W2912103742 cites W1980674855 @default.
- W2912103742 cites W1982046549 @default.
- W2912103742 cites W2003521535 @default.
- W2912103742 cites W2007349351 @default.
- W2912103742 cites W2008064439 @default.
- W2912103742 cites W2009605729 @default.
- W2912103742 cites W2013928903 @default.
- W2912103742 cites W2016696661 @default.
- W2912103742 cites W2020807707 @default.
- W2912103742 cites W2021709655 @default.
- W2912103742 cites W2022348906 @default.
- W2912103742 cites W2024523220 @default.
- W2912103742 cites W2027688094 @default.
- W2912103742 cites W2029264941 @default.
- W2912103742 cites W2043403903 @default.
- W2912103742 cites W2046198563 @default.
- W2912103742 cites W2048292114 @default.
- W2912103742 cites W2049932796 @default.
- W2912103742 cites W2068342706 @default.
- W2912103742 cites W2077017293 @default.
- W2912103742 cites W2089409113 @default.
- W2912103742 cites W2091207785 @default.
- W2912103742 cites W2095016596 @default.
- W2912103742 cites W2107279259 @default.
- W2912103742 cites W2124568151 @default.
- W2912103742 cites W2155138345 @default.
- W2912103742 cites W2155752657 @default.
- W2912103742 cites W2162502530 @default.
- W2912103742 cites W2164311012 @default.
- W2912103742 cites W2164447927 @default.
- W2912103742 cites W2183415651 @default.
- W2912103742 cites W2184360760 @default.
- W2912103742 cites W2196103349 @default.
- W2912103742 cites W2547455428 @default.
- W2912103742 cites W2587413758 @default.
- W2912103742 cites W2601893070 @default.
- W2912103742 cites W2621777253 @default.
- W2912103742 cites W2753033146 @default.
- W2912103742 cites W2754093827 @default.
- W2912103742 cites W2767090752 @default.
- W2912103742 cites W2770100287 @default.
- W2912103742 cites W2793497948 @default.
- W2912103742 cites W2896927705 @default.
- W2912103742 cites W2907675924 @default.
- W2912103742 cites W2922263768 @default.
- W2912103742 cites W2954794376 @default.
- W2912103742 cites W3009397686 @default.
- W2912103742 cites W4230271547 @default.
- W2912103742 cites W4251906480 @default.
- W2912103742 cites W4253643813 @default.
- W2912103742 cites W4255517500 @default.
- W2912103742 cites W4312575823 @default.
- W2912103742 doi "https://doi.org/10.5194/hess-24-41-2020" @default.
- W2912103742 hasPublicationYear "2020" @default.
- W2912103742 type Work @default.
- W2912103742 sameAs 2912103742 @default.
- W2912103742 citedByCount "11" @default.
- W2912103742 countsByYear W29121037422021 @default.
- W2912103742 countsByYear W29121037422022 @default.
- W2912103742 countsByYear W29121037422023 @default.
- W2912103742 crossrefType "journal-article" @default.
- W2912103742 hasAuthorship W2912103742A5000996765 @default.
- W2912103742 hasAuthorship W2912103742A5040527420 @default.
- W2912103742 hasAuthorship W2912103742A5074771553 @default.
- W2912103742 hasAuthorship W2912103742A5077752643 @default.
- W2912103742 hasBestOaLocation W29121037421 @default.
- W2912103742 hasConcept C107872376 @default.
- W2912103742 hasConcept C114614502 @default.
- W2912103742 hasConcept C120665830 @default.
- W2912103742 hasConcept C121332964 @default.
- W2912103742 hasConcept C127313418 @default.
- W2912103742 hasConcept C135402231 @default.
- W2912103742 hasConcept C140779682 @default.
- W2912103742 hasConcept C150394285 @default.
- W2912103742 hasConcept C159390177 @default.
- W2912103742 hasConcept C161176658 @default.
- W2912103742 hasConcept C178790620 @default.
- W2912103742 hasConcept C185544564 @default.
- W2912103742 hasConcept C185592680 @default.
- W2912103742 hasConcept C187320778 @default.
- W2912103742 hasConcept C18903297 @default.
- W2912103742 hasConcept C2778863792 @default.